skip to main content

Search for: All records

Award ID contains: 1633631

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Modern tokamaks have achieved significant fusion production, but further progress towards steady-state operation has been stymied by a host of kinetic and MHD instabilities. Control and identification of these instabilities is often complicated, warranting the application of data-driven methods to complement and improve physical understanding. In particular, Alfvén eigenmodes are a class of ubiquitous mixed kinetic and MHD instabilities that are important to identify and control because they can lead to loss of confinement and potential damage to the walls of a plasma device. In the present work, we use reservoir computing networks to classify Alfvén eigenmodes in a large labeled database of DIII-D discharges, covering a broad range of operational parameter space. Despite the large parameter space, we show excellent classification and prediction performance, with an average hit rate of 91% and false alarm ratio of 7%, indicating promise for future implementation with additional diagnostic data and consolidation into a real-time control strategy.
    Free, publicly-accessible full text available December 17, 2022
  2. A bstract Distinguishing between prompt muons produced in heavy boson decay and muons produced in association with heavy-flavor jet production is an important task in analysis of collider physics data. We explore whether there is information available in calorimeter deposits that is not captured by the standard approach of isolation cones. We find that convolutional networks and particle-flow networks accessing the calorimeter cells surpass the performance of isolation cones, suggesting that the radial energy distribution and the angular structure of the calorimeter deposits surrounding the muon contain unused discrimination power. We assemble a small set of high-level observables which summarize the calorimeter information and close the performance gap with networks which analyze the calorimeter cells directly. These observables are theoretically well-defined and can be studied with collider data.
  3. Oliva, Gabriele (Ed.)
    We define a new family of similarity and distance measures on graphs, and explore their theoretical properties in comparison to conventional distance metrics. These measures are defined by the solution(s) to an optimization problem which attempts find a map minimizing the discrepancy between two graph Laplacian exponential matrices, under norm-preserving and sparsity constraints. Variants of the distance metric are introduced to consider such optimized maps under sparsity constraints as well as fixed time-scaling between the two Laplacians. The objective function of this optimization is multimodal and has discontinuous slope, and is hence difficult for univariate optimizers to solve. We demonstrate a novel procedure for efficiently calculating these optima for two of our distance measure variants. We present numerical experiments demonstrating that (a) upper bounds of our distance metrics can be used to distinguish between lineages of related graphs; (b) our procedure is faster at finding the required optima, by as much as a factor of 10 3 ; and (c) the upper bounds satisfy the triangle inequality exactly under some assumptions and approximately under others. We also derive an upper bound for the distance between two graph products, in terms of the distance between the two pairs of factors. Additionally,more »we present several possible applications, including the construction of infinite “graph limits” by means of Cauchy sequences of graphs related to one another by our distance measure.« less