skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of topographic complexity on species richness in the Galápagos Islands
Abstract AimThe accumulation of species through time has been proposed to have a hump‐shaped relationship on volcanic islands (highest species richness during intermediate stages of an island's lifespan). Change in topographic complexity (TC) of islands over time is assumed to follow the same relationship. However, TC can be measured in different ways and may not have the same impact across taxonomic groups. Here, we quantify TC across the Galápagos Islands and test the assumption that TC follows a predictable trajectory with island age. Subsequently, we ask whether including TC improves statistical models seeking to explain variation in species richness across islands. LocationGalápagos Archipelago, Ecuador. TaxonNative and endemic terrestrial animals and plants. MethodsFor each island, we generated eight TC indices from a 30‐m resolution digital elevation model. We tested for a relationship between each index and island age, and whether it significantly contributes to observed variation in species richness, using 11 different models for 12 taxonomic groups across the Galápagos Islands. ResultsFour TC indices were significantly negatively correlated with either island age or ontogenetic age and only one index followed the hump‐shaped relationship with age. No index consistently contributed to the variation in species richness for all taxonomic groups. However, for all 12 taxonomic groups, incorporating at least one TC index in modelling species richness improved one or more models. The most common TC index improving models was standard deviation of slope, although each index improved at least five models across all taxa. Different factors predicted taxon‐specific richness, and habitat diversity was significant for all taxa. Main conclusionsTopographic complexity is an important component influencing species richness, but its impact likely differs among taxonomic groups and different scales. Therefore, future studies should incorporate broad, multi‐dimensional measures of TC to understand the biological importance of TC.  more » « less
Award ID(s):
1751157
PAR ID:
10445978
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
48
Issue:
10
ISSN:
0305-0270
Page Range / eLocation ID:
p. 2645-2655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimThe accumulation of functional diversity in communities is poorly understood. Conveniently, the general dynamic model of island biogeography (GDM) makes predictions for how such diversity might accumulate over time. In this multiscale study of land snail communities on 10 oceanic archipelagos located in various regions of the globe, we test hypotheses of community assembly in systems where islands serve as chronosequences along island ontogeny. LocationTen volcanic archipelagos. Time periodFrom 23 Ma to the present. Major taxa studiedEndemic land snails. MethodsInitially, we assembled geological island characteristics of area, isolation and ontogeny for all studied islands. We then characterized island‐scale biotic variables, including the species diversity and functional diversity of snail communities. From these data, we assessed relationships between island and snail community variables as predicted by the GDM, focusing initially on the islands of the Galápagos archipelago and thereafter with a broader analysis of 10 archipelagoes. ResultsAs in other studies of island assemblages, in Galápagos we find a hump‐shaped curve of species richness, with depauperate snail faunas on early‐ontogeny islands, increasing species richness on mid‐ontogeny islands and low species richness on islands in late ontogeny. We find exceptionally low functional diversity on early‐ontogeny islands that increases through mid‐ontogeny, whereas late‐ontogeny islands exhibit a range of functional diversity. The analysis including all 10 archipelagos indicates a major role of archipelago‐specific factors. In both sets of analyses, functional diversity is exceptionally low on early‐ontogeny islands, and island ontogeny is a significant predictor of morphology. Main conclusionsConsistent patterns of functional diversity across island ontogeny on all examined archipelagos indicate a common role for habitat filtering, ecological opportunity and competition in a diversity of systems, leading to predictable changes in functional diversity and average morphology through island ontogeny, whereas patterns of species richness appear subject to archipelago‐specific factors. 
    more » « less
  2. Abstract QuestionsGrasslands provide important provisioning services worldwide and their management has consequences for these services. Management intensification is a widespread land‐use change and has accelerated across North America to meet rising demands on productivity, yet its impact on the relationship between plant diversity and productivity is still unclear. Here, we investigated the relationship between plant diversity and grassland productivity across nine ecoclimatic domains of the continental United States. We also tested the effect of management intensification on diversity and productivity in four case studies. MethodsWe acquired remotely sensed gross primary productivity data (GPP, 1986–2018) and plant diversity data measured at different spatial scales (1, 10, 100, 400 m2), as well as climate variables including the Palmer drought index from two ecological networks. We used general linear mixed models to relate GPP to plant diversity across sites. For the case study analysis, we used linear mixed models to relate plant diversity to management intensity, and tested if the management intensity influenced the relationship between GPP (mean and temporal variation) and drought. ResultsAcross all sites, we observed positive relationships among species richness, productivity, and the temporal stability of mean annual biomass production. These relationships were not affected by the scale at which species richness was observed. In three out of the four case studies, we observed that management effects on species richness were only significant at broader scales (i.e., ≥10 m2) with no clear effect found at the commonly used 1‐m2quadrat scale. In one case study, species‐poor, intensively managed pastures presented the highest productivity but were more sensitive to dry conditions than less intensified pastures. However, in other case studies, we did not observe significant effects of management intensity on the magnitude or stability of productivity. ConclusionsGeneralization across studies may be difficult and require the development of intensification indices general enough to be applied across diverse management strategies in grazilands. Understanding how management intensification affects grassland productivity will inform the development of sustainable intensification strategies. 
    more » « less
  3. Abstract Islands make up a large proportion of Earth's biodiversity, yet are also some of the most sensitive systems to environmental perturbation. Biogeographic theory predicts that geologic age, area, and isolation typically drive islands' diversity patterns, and thus potentially impact non‐native spread and community homogenization across island systems. One limitation in testing such predictions has been the difficulty of performing comprehensive inventories of island biotas and distinguishing native from introduced taxa. Here, we use DNA metabarcoding and statistical modelling as a high throughput method to survey community‐wide arthropod richness, the proportion of native and non‐native species, and the incursion of non‐natives into primary habitats on three archipelagos in the Pacific – the Ryukyus, the Marianas and Hawaii – which vary in age, isolation and area. Diversity patterns largely match expectations based on island biogeography theory, with the oldest and most geographically connected archipelago, the Ryukyus, showing the highest taxonomic richness and lowest proportion of introduced species. Moreover, we find evidence that forest habitats are more resilient to incursions of non‐natives in the Ryukyus than in the less taxonomically rich archipelagos. Surprisingly, we do not find evidence for biotic homogenization across these three archipelagos: the assemblage of non‐native species on each island is highly distinct. Our study demonstrates the potential of DNA metabarcoding to facilitate rapid estimation of biogeographic patterns, the spread of non‐native species, and the resilience of ecosystems. 
    more » « less
  4. Abstract AimTo better understand the potential impact of climate change on butterfly assemblages across a tropical island, we model the potential for taxonomic and functional homogenization and determine climate‐ and trait‐mediated shifts in projected species distributions. LocationPuerto Rico. MethodsWe used thousands of museum records of diurnal Lepidoptera to model current (1970–2000) and forecast future (2061–2080) species distributions and combined these to test for taxonomic and functional homogenization. We then quantified climatic‐mediated effects on current and forecasted taxonomic and functional composition and, specifically, whether temperature was a primary driver, as predicted by the temperature–size rule and the thermal melanism hypotheses. Finally, we measured wing traits important in thermoregulation (size and colour) and determined trait‐mediated changes in forecasted species distributions over time. ResultsBased on ensemble model outputs, taxonomic and functional richness and turnover were predicted to vary across the island's complex topography. Our models projected an increase in taxonomic and functional richness over time, and a decrease in taxonomic and functional turnover – a signature of biotic homogenization. Under future climate scenarios, models projected a decrease in wing length and an increase in wing brightness at higher elevations. One variable, temperature seasonality, was the strongest predicted driver of both the current spatial distribution and the projected per cent change over time for not only wing traits but also taxonomic and functional richness and turnover. Main conclusionsThe species distribution models generated here identify several priority regions and species for future research and conservation efforts. Our work also highlights the role of seasonality and climatic variability on diverse tropical Lepidoptera assemblages, suggesting that climatic variability may be an important, albeit overlooked, driver of climate change responses. 
    more » « less
  5. Invasive marine invertebrates are increasingly recognized as a potential disturbance to coastal ecosystems. We sought to better document the taxonomic composition of subtidal communities around Long Island to obtain a baseline that can be used to monitor current and future invasions of non-indigenous species. We placed settlement blocks at 18 sites along the coast of Long Island, New York, for three months. After recovering blocks at 12 sites, we analyzed the taxonomic composition of fouling communities on the blocks. We observed 64 invertebrate and 3 algal taxa, with large variation in taxon richness among sites. Multivariate analyses revealed that although taxon composition was significantly dissimilar between north and south shores, variation in dissimilarity did not differ significantly between shores. The high variability in taxon composition observed among sites indicates that additional research is needed to expand our knowledge of invertebrate diversity in the waters surrounding Long Island. Adding more sites and replicate blocks within sites could improve future sampling designs. This research will benefit continuing efforts to monitor, manage, and prevent the establishment of marine invasive species. 
    more » « less