skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature seasonality drives taxonomic and functional homogenization of tropical butterflies
Abstract AimTo better understand the potential impact of climate change on butterfly assemblages across a tropical island, we model the potential for taxonomic and functional homogenization and determine climate‐ and trait‐mediated shifts in projected species distributions. LocationPuerto Rico. MethodsWe used thousands of museum records of diurnal Lepidoptera to model current (1970–2000) and forecast future (2061–2080) species distributions and combined these to test for taxonomic and functional homogenization. We then quantified climatic‐mediated effects on current and forecasted taxonomic and functional composition and, specifically, whether temperature was a primary driver, as predicted by the temperature–size rule and the thermal melanism hypotheses. Finally, we measured wing traits important in thermoregulation (size and colour) and determined trait‐mediated changes in forecasted species distributions over time. ResultsBased on ensemble model outputs, taxonomic and functional richness and turnover were predicted to vary across the island's complex topography. Our models projected an increase in taxonomic and functional richness over time, and a decrease in taxonomic and functional turnover – a signature of biotic homogenization. Under future climate scenarios, models projected a decrease in wing length and an increase in wing brightness at higher elevations. One variable, temperature seasonality, was the strongest predicted driver of both the current spatial distribution and the projected per cent change over time for not only wing traits but also taxonomic and functional richness and turnover. Main conclusionsThe species distribution models generated here identify several priority regions and species for future research and conservation efforts. Our work also highlights the role of seasonality and climatic variability on diverse tropical Lepidoptera assemblages, suggesting that climatic variability may be an important, albeit overlooked, driver of climate change responses.  more » « less
Award ID(s):
2042453
PAR ID:
10504154
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Diversity and Distributions
Date Published:
Journal Name:
Diversity and Distributions
ISSN:
1366-9516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Assemblages in seasonal ecosystems undergo striking changes in species composition and diversity across the annual cycle. Despite a long‐standing recognition that seasonality structures biogeographic gradients in taxonomic diversity (e.g., species richness), our understanding of how seasonality structures other aspects of biodiversity (e.g., functional diversity) has lagged. Integrating seasonal species distributions with comprehensive data on key morphological traits for bird assemblages across North America, we find that seasonal turnover in functional diversity increases with the magnitude and predictability of seasonality. Furthermore, seasonal increases in bird species richness led to a denser packing of functional trait space, but functional expansion was important, especially in regions with higher seasonality. Our results suggest that the magnitude and predictability of seasonality and total productivity can explain the geography of changes in functional diversity with broader implications for understanding species redistribution, community assembly and ecosystem functioning. 
    more » « less
  2. Abstract AimBiodiversity on Earth is threatened by climate change. Despite the vulnerability of freshwater habitats to human impacts, most climate change projections have focused on terrestrial systems. Here, we examined how the current distributions and biodiversity of stream taxa might change under mitigated, stabilizing and increasing greenhouse gas emissions. LocationConterminous USA. Time periodPresent day to 2070. Major taxa studiedStream diatoms, insects and fish. MethodsWe developed species distribution models for 336 freshwater taxa from 1,227 distinct stream localities using water chemistry, watershed and climatic variables. Models based only on climate were used to project changes in the distributions and biodiversity of cold‐ versus warm‐water taxa under representative concentration pathways (RCPs) ranging from 2.6 to 8.5 W/m2. ResultsIn all three organismal groups, climate emerged as the strongest predictor of species distributions, providing comparable explanatory power to water chemistry and watershed variables combined. The RCP‐based projections suggested a widespread expansion of warm‐water taxa, outpacing the decline of cold‐water taxa. Consequently, overall species richness would increase, but beta diversity would decrease drastically with the severity of climate change. A closer look at individual taxa and functional guilds revealed that vulnerable cold‐water taxa included: (a) diatom guilds forming the base and bulk of the biofilm; (b) environmentally sensitive insects, characteristic of unimpacted streams; and (c) ecologically and recreationally important salmonids, which were forecast to diminish dramatically in source habitats. Warm‐water fish projected to increase their distributions include bait bucket release minnows and dominant predators. Main conclusionsOur results suggest potentially devastating impacts of climate change on stream ecosystems, with the restructuring of diatom, insect and fish communities, diminished distributions of functionally important taxa and widespread expansion of warm‐water taxa, giving rise to biotic homogenization. Given that the magnitude of these biotic shifts depends on the severity of climate change, appropriate current policy decisions are necessary to preserve freshwater ecosystems. 
    more » « less
  3. Abstract High alpine regions are threatened but understudied ecosystems that harbor diverse endemic species, making them an important biome for testing the role of environmental factors in driving functional trait‐mediated community assembly processes. We tested the hypothesis that plant community assembly along a climatic and elevation gradient is influenced by shifts in habitat suitability, which drive plant functional, phylogenetic, and spectral diversity. In a high mountain system (2400–3500 m) Región Metropolitana in the central Chilean Andes (33°S, 70°W). We surveyed vegetation and spectroscopic reflectance (400–2400 nm) to quantify taxonomic, phylogenetic, functional, and spectral diversity at five sites from 2400 to 3500 m elevation. We characterized soil attributes and processes by measuring water content, carbon and nitrogen, and net nitrogen mineralization rates. At high elevation, colder temperatures reduced available soil nitrogen, while at warmer, lower elevations, soil moisture was lower. Metrics of taxonomic, functional, and spectral alpha diversity peaked at mid‐elevations, while phylogenetic species richness was highest at low elevation. Leaf nitrogen increased with elevation at the community level and within individual species, consistent with global patterns of increasing leaf nitrogen with colder temperatures. The increase in leaf nitrogen, coupled with shifts in taxonomic and functional diversity associated with turnover in lineages, indicate that the ability to acquire and retain nitrogen in colder temperatures may be important in plant community assembly in this range. Such environmental filters have important implications for forecasting shifts in alpine plant communities under a warming climate. 
    more » « less
  4. PremiseClouds have profound consequences for ecosystem structure and function. Yet, the direct monitoring of clouds and their effects on biota is challenging especially in remote and topographically complex tropical cloud forests. We argue that known relationships between climate and the taxonomic and functional composition of plant communities may provide a fingerprint of cloud base height, thus providing a rapid and cost‐effective assessment in remote tropical cloud forests. MethodsTo detect cloud base height, we compared species turnover and functional trait values among herbaceous and woody plant communities in an ecosystem dominated by cloud formation. We measured soil and air temperature, soil nutrient concentrations, and extracellular enzyme activity. We hypothesized that woody and herbaceous plants would provide signatures of cloud base height, as evidenced by abrupt shifts in both taxonomic composition and plant function. ResultsWe demonstrated abrupt changes in taxonomic composition and the community‐ weighted mean of a key functional trait, specific leaf area, across elevation for both woody and herbaceous species, consistent with our predictions. However, abrupt taxonomic and functional changes occurred 100 m higher in elevation for herbaceous plants compared to woody ones. Soil temperature abruptly decreased where herbaceous taxonomic and functional turnover was high. Other environmental variables including soil biogeochemistry did not explain the abrupt change observed for woody plant communities. ConclusionsWe provide evidence that a trait‐based approach can be used to estimate cloud base height. We outline how rises in cloud base height and differential environmental requirements between growth forms can be distinguished using this approach. 
    more » « less
  5. Abstract Understanding how climate affects trait composition within a biological assemblage is critical for assessing and eventually mitigating climate change impacts on the assemblage and its ecological functioning. While body size is a fundamental trait of animals as it affects many aspects of species' biology and ecology, it remains unclear through what mechanisms temperature and its variability influence within‐assemblage body size variation.This study aims to understand how temperature and its variability shape body size variations in animal assemblages and potentially affect assemblages' vulnerability to climate change. Using >5300 individuals of 680 macromoth species collected from 13 assemblages along a ca. 3000 m elevational gradient in Taiwan, we examined (1) the strength of environmental filtering and niche partitioning in determining the intra‐ and inter‐specific size variations within an assemblage, and (2) the effects of mean temperature and the daily and seasonal temperature variabilities on the strength of the two processes.We found that the body size composition was strongly affected by temperature and its seasonality via both processes. High temperature seasonality enhanced niche partitioning, causing within‐population size convergence. In contrast, low mean temperature and low seasonality both enhanced environmental filtering, causing within‐assemblage size convergence. However, while low temperature restricted the lower size limit within an assemblage, low seasonality restricted both lower and upper size limits.This study indicates an overlooked but important role of temperature seasonality in shaping intra‐ and inter‐specific size variations in moth assemblages through both environmental filtering and niche partitioning. With rising temperatures and amplifying seasonality around the globe, potentially weakened filtering forces may increase the size variation within assemblages, reinforcing the assemblage‐level resilience. Nevertheless, enhanced niche partitioning may limit size variation within populations, which may increase the population‐level vulnerability to environmental changes. This study improves the mechanistic understanding of the climatic effects on trait composition in animal assemblages and provides essential information for biodiversity conservation under climate change. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less