skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral analysis of networks with latent space dynamics and signs
Abstract We pursue the problem of modelling and analysing latent space dynamics in collections of networks. Towards this end, we pose and study latent space generative models for signed networks that are amenable to inference via spectral methods. Permitting signs, rather than restricting to unsigned networks, enables richer latent space structure and permissible dynamic mechanisms that can be provably inferred via low rank truncations of observed adjacency matrices. Our treatment of and ability to recover latent space dynamics holds across different levels of granularity, namely, at the overall graph level, for communities of nodes, and even at the individual node level. We provide synthetic and real data examples to illustrate the effectiveness of methodologies and to corroborate accompanying theory. The contributions set forth in this paper complement an emerging statistical paradigm for random graph inference encompassing random dot product graphs and generalizations thereof.  more » « less
Award ID(s):
1902755 1951005
PAR ID:
10446001
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
10
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Representation learning over graph structured data has been mostly studied in static graph settings while efforts for modeling dynamic graphs are still scant. In this paper, we develop a novel hierarchical variational model that introduces additional latent random variables to jointly model the hidden states of a graph recurrent neural network (GRNN) to capture both topology and node attribute changes in dynamic graphs. We argue that the use of high-level latent random variables in this variational GRNN (VGRNN) can better capture potential variability observed in dynamic graphs as well as the uncertainty of node latent representation. With semi-implicit variational inference developed for this new VGRNN architecture (SI-VGRNN), we show that flexible non-Gaussian latent representations can further help dynamic graph analytic tasks. Our experiments with multiple real-world dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently outperform the existing baseline and state-of-the-art methods by a significant margin in dynamic link prediction. 
    more » « less
  2. Representation learning over graph structured data has been mostly studied in static graph settings while efforts for modeling dynamic graphs are still scant. In this paper, we develop a novel hierarchical variational model that introduces additional latent random variables to jointly model the hidden states of a graph recurrent neural network (GRNN) to capture both topology and node attribute changes in dynamic graphs. We argue that the use of high-level latent random variables in this variational GRNN (VGRNN) can better capture potential variability observed in dynamic graphs as well as the uncertainty of node latent representation. With semi-implicit variational inference developed for this new VGRNN architecture (SI-VGRNN), we show that flexible non-Gaussian latent representations can further help dynamic graph analytic tasks. Our experiments with multiple real-world dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently outperform the existing baseline and state-of-the-art methods by a significant margin in dynamic link prediction. 
    more » « less
  3. Many social networks contain sensitive relational information. One approach to protect the sensitive relational information while offering flexibility for social network research and analysis is to release synthetic social networks at a pre-specified privacy risk level, given the original observed network. We propose the DP-ERGM procedure that synthesizes networks that satisfy the differential privacy (DP) via the exponential random graph model (EGRM). We apply DP-ERGM to a college student friendship network and compare its original network information preservation in the generated private networks with two other approaches: differentially private DyadWise Randomized Response (DWRR) and Sanitization of the Conditional probability of Edge given Attribute classes (SCEA). The results suggest that DP-EGRM preserves the original information significantly better than DWRR and SCEA in both network statistics and inferences from ERGMs and latent space models. In addition, DP-ERGM satisfies the node DP, a stronger notion of privacy than the edge DP that DWRR and SCEA satisfy. 
    more » « less
  4. null (Ed.)
    Abstract Learning the topology of a graph from available data is of great interest in many emerging applications. Some examples are social networks, internet of things networks (intelligent IoT and industrial IoT), biological connection networks, sensor networks and traffic network patterns. In this paper, a graph topology inference approach is proposed to learn the underlying graph structure from a given set of noisy multi-variate observations, which are modeled as graph signals generated from a Gaussian Markov Random Field (GMRF) process. A factor analysis model is applied to represent the graph signals in a latent space where the basis is related to the underlying graph structure. An optimal graph filter is also developed to recover the graph signals from noisy observations. In the final step, an optimization problem is proposed to learn the underlying graph topology from the recovered signals. Moreover, a fast algorithm employing the proximal point method has been proposed to solve the problem efficiently. Experimental results employing both synthetic and real data show the effectiveness of the proposed method in recovering the signals and inferring the underlying graph. 
    more » « less
  5. Abstract Varimax factor rotations, while popular among practitioners in psychology and statistics since being introduced by Kaiser (1958), have historically been viewed with skepticism and suspicion by some theoreticians and mathematical statisticians. Now, work by Rohe & Zeng (2023) provides new, fundamental insight: varimax rotations provably perform statistical estimation in certain classes of latent variable models when paired with spectral-based matrix truncations for dimensionality reduction. We build on this new-found understanding of varimax rotations by developing further connections to network analysis and spectral methods rooted in entrywise matrix perturbation analysis. Concretely, this paper establishes the asymptotic multivariate normality of vectors in varimax-transformed Euclidean point clouds that represent low-dimensional node embeddings in certain latent space random graph models. We address related concepts including network sparsity, data denoising and the role of matrix rank in latent variable parameterizations. Collectively, these findings, at the confluence of classical and contemporary multivariate analysis, reinforce methodology and inference procedures grounded in matrix factorization-based techniques. Numerical examples illustrate our findings and supplement our discussion. 
    more » « less