Abstract Highly congested derivatives of biphenyl were prepared by double Diels‐Alder reactions of cyclopentadienones with substituted butadiynes. The reaction of 2,3,5‐tri(tert‐butyl)cyclopentadienone (5) and diphenylbutadiyne (3) gave only the single adduct, 1‐(phenylethynyl)‐2‐phenyl‐3,5,6‐tri‐tert‐butylbenzene (6), and even extreme conditions gave no second addition. When tetracyclone (4) was added to bis(trimethylsilyl)butadiyne (8), two additions were achieved, but one silyl group was lost either during, or immediately following, the second addition to give 2‐(trimethylsilyl)‐2′,3,3′,4,4′,5,5′,6‐octaphenylbiphenyl (11). However, when 3,4‐diphenyl‐2,5‐dimethylcyclopentadienone (12) was added to8, the fully substituted 2,2′‐bis(trimethylsilyl)‐4,4′,5,5′‐tetraphenyl‐3,3′,6,6′‐tetramethylbiphenyl (14) was formed. The X‐ray structures of compounds11and14show them to be quite crowded, but the central biphenyl rings do not exhibit the distortions previously observed in decaphenylbiphenyl. In an alternative approach, arynes were added to 5,5′‐bis(4‐chlorophenyl)‐3,3′,4,4′‐tetraphenyl‐2,2′‐bis(cyclopentadienone) (18). Simple benzyne added twice to give 4,4′‐bis(4‐chlorophenyl)‐2,2′,3,3′‐tetraphenyl‐1,1′‐binaphthyl (19) in low yield, but tetraphenylbenzyne, generated from tetraphenylanthranilic acid, added only once. 
                        more » 
                        « less   
                    
                            
                            The Pursuit of Perphenylterphenyls
                        
                    
    
            Abstract Tetradecaphenyl‐p‐terphenyl (2) was synthesized from 2,3,5,6‐tetraphenyl‐1,4‐diiodobenzene (11) by two methods. Ullmann coupling of11with pentaphenyliodobenzene (9) gave compound2in 1.7 % yield, and Sonogashira coupling of11with phenylacetylene, followed by a double Diels‐Alder reaction of the product diyne12with tetracyclone (6), gave2in 1.5 % overall yield. The latter reaction also gave the monoaddition product 4‐(phenylethynyl)‐2,2′,3,3′,4′,5,5′,6,6′‐nonaphenylbiphenyl (13) in 4 % overall yield. The X‐ray structures of compounds2and13show them to possess core aromatic rings distorted into shallow boat conformations. Density functional calculations indicate that these unusual structures are not the lowest energy conformations in the gas phase and may be the result of packing forces in the crystal. In addition, while uncorrected DFT calculations indicate that the strain energy in compound2is approximately 50 kcal/mol, dispersion‐corrected DFT calculations suggest that it is essentially unstrained, due to compensating, favorable, intramolecular interactions of its many phenyl rings. An attempted synthesis of tetradecaphenyl‐o‐terphenyl (4) by reaction of diphenylhexatriyne (14) with three equivalents of tetracyclone at 350 °C gave only the diadduct 2‐(phenylethynyl)‐2′,3,3′,4,4′,5,5′,6,6′‐nonaphenylbiphenyl (15) in 17 % yield. Even higher temperatures failed to produce4and lowered the yield of15, perhaps due to rapid decomposition of the starting materials. Ullmann coupling of 3,4,5,6‐tetraphenyl‐1,2‐diiodobenzene (16) and compound9also failed to give compound4. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1762452
- PAR ID:
- 10446024
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 28
- Issue:
- 41
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A new sterically bulky chelating bis(alkoxide) ligand 3,3′-([1,1′:4′,1′′-terphenyl]-2,2′′-diyl)bis(2,2,4,4-tetramethylpentan-3-ol), (H 2 [OO] tBu ), was prepared in a two-step process as the dichloromethane monosolvate, C 36 H 50 O 2 ·CH 2 Cl 2 . The first step is a Suzuki–Miyaura coupling reaction between 2-bromophenylboronic acid and 1,4-diiodobenzene. The resulting 2,2′′-dibromo-1,1′:4′,1′′-terphenyl was reacted with t BuLi and hexamethylacetone to obtain the desired product. The crystal structure of H 2 [OO] tBu revealed an anti conformation of the [CPh 2 (OH)] fragments relative to the central phenyl. Furthermore, the hydroxyl groups point away from each other. Likely because of this anti – anti conformation, the attempts to synthesize first-row transition-metal complexes with H 2 [OO] tBu were not successful.more » « less
- 
            Abstract Octalenobisterphenylene1(also known as terphenylene dimer) was synthesized from 3,3′,5,5′‐tetraaryl‐substituted biaryl bytert‐butyllithium‐mediated cyclization followed by oxidative coupling. This one‐pot two‐step protocol facilitated the successive formation of four four‐membered and two eight‐membered rings. Treatment of1with sodium metal, followed by crystallization from THF, yielded the remarkable diradical dianion [(1•–)2]2−, where the two molecular halves are connected by four σ bonds. The cyclodimerization is driven by the pronounced reactivity and strain of the central six‐membered ring within the [3]phenylene subunit. The structure and diradical nature of [(Na+)2(1•–)2] were confirmed through X‐ray crystallography, DFT computations, and1H NMR and ESR spectra. These investigations revealed that the two spins, one on each molecular half, exhibit minimal mutual interaction.more » « less
- 
            We introduce a two-step silica-encapsulation procedure to optimize both the optical efficiency and structural robustness of 5,5′,6,6′-tetrachloro-1,1′-diethyl-3,3′-di(4–sulfobutyl)-benzimidazolocarbocyanine (TDBC), a two-dimensional sheet-like J-aggregate. We report a fluorescence quantum yield of ~98%, the highest quantum yield recorded for any J-aggregate structure at room temperature, and a fast, emissive lifetime of 234 ps. Silica, as an encapsulating matrix, provides optical transparency, chemical inertness, and robustness to dilution, while rigidifying the J-aggregate structure. Our in situ encapsulation process preserves the excitonic structure in TDBC J-aggregates, maintaining their light absorption and emission properties. The homogeneous silica coating has an average thickness of 0.5-1 nm around J-aggregate sheets. Silica encapsulation permits extensive dilutions of J-aggregates without significant disintegration into monomers. The narrow absorbance and emission line widths exhibit further narrowing upon cooling to 79 K, which is consistent with J-type coupling in the encapsulated aggregates. This silica TDBC J-aggregate construct signifies (1) a bright, fast, and robust fluorophore system, (2) a platform for further manipulation of J-aggregates as building blocks for integration with other optical materials and structures, and (3) a system for fundamental studies of exciton delocalization, transport, and emission dynamics within a rigid matrix.more » « less
- 
            The reaction of dibenzonorcarynyliden(e/oid) with phencyclone was recently reported to give a congested spiropentane withendostereochemistry. Herein we report that, in sharp contrast, an analogous reaction using tetracyclone, instead of phencyclone, gives the highly crowded title spiropentane but withexostereochemistry as determined by X-ray crystallography. This new tetracyclone adduct (C44H30O) crystallizes upon slow evaporation from hexanes/ethyl acetate in the monoclinic crystal system andP21/n(No. 14) space group. It has one molecule in the asymmetric unit and four molecules per unit cell. DLPNO-CCSD(T)/def2-TZVP//B3LYP/def2-SVP calculations indicate that theendospiropentane diastereomers from phencyclone and tetracyclone are both more stable than the correspondingexoforms by 6.68 and 5.35 kcal mol−1, respectively. As noted previously in the phencyclone system, favorable π-stacking interactions between the two flat biphenyl moieties in the product and transition state may lead to the preferential formation of theendodiastereomer. However, the ability of the phenyl rings in the 3,4-position of the tetracyclone component to rotate could introduce destabilizing steric interactions in the transition state that hinder formation of theendodiastereomer in favor of the less thermodynamically stableexoisomer.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
