Abstract Since doped polymers require a charge‐neutralizing counter‐ion to maintain charge neutrality, tailored and high degrees of doping in organic semiconductors requires an understanding of the coupling between ionic and electronic carrier motion. A method of counter‐ion exchange is utilized using the polymeric semiconductor poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] ‐C14to deconvolute the effects of ionic/polaronic interactions with the electrical properties of doped semiconducting polymers. In particular, exchanging the counter‐ions of the dopant nitrosonium hexafluorophosphate enables investigation into the role of counter‐ion size from 5.2 to 8.2 Å in diameter. The orientational order of the polymeric crystallites is not affected with this exchange process while effectively modifying the counter‐ion distance to the charge carrier. Doped films have electrical conductivities of 320 S cm−1and are not sensitive to an increased ion‐polaron distance. It is posited that other factors dominate the electrical properties at a device scale, such as the morphology and presence of domain boundaries. Interestingly, the temperature stability of the doped film can be drastically improved with the use of counter‐ions containing less labile bonds. This platform serves as a unique way to retain the morphology of polymeric thin films while studying charge interactions at the local scale. 
                        more » 
                        « less   
                    
                            
                            High‐Efficiency Ion‐Exchange Doping of Conducting Polymers
                        
                    
    
            Abstract Molecular doping—the use of redox‐active small molecules as dopants for organic semiconductors—has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox‐active character of these materials. A recent breakthrough was a doping technique based on ion‐exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno(3,2‐b)thiophene) (PBTTT) doped with FeCl3and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm−1and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3, are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1729737
- PAR ID:
- 10446052
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 34
- Issue:
- 22
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Faux‐hawk fullerenes are promising candidates for high‐performance organic field‐effect transistors (OFETs). They show dense molecular packing and high thermal stability. Furthermore, in contrast to most other C60derivates, functionalization of the fullerene core by the fluorinated group C6F4CF2does not increase their lowest unoccupied orbital position, which allows the use of air‐stable molecular n‐dopants to optimize their performance. The influence of n‐doping on the performance of OFETs based on the faux‐hawk fullerene 1,9‐C60(cyclo‐CF2(2‐C6F4)) (C60FHF) is studied. An analytic model for n‐doped transistors is presented and used to clarify the origin of the increase in the subthreshold swing usually observed in doped OFETs. It is shown that the increase in subthreshold swing can be minimized by using a bulk dopant layer at the gate dielectric/C60FHF layer instead of a mixed host:dopant layer. Following an optimization of the OFETs, an average electron mobility of 0.34 cm2 V−1 s−1, a subthreshold swing below 400 mV dec−1for doped transistors, and a contact resistance of 10 kΩ cm is obtained, which is among the best performance for fullerene based n‐type semiconductors.more » « less
- 
            Cyclic voltammetry was applied to investigate the permselective properties of electrode-supported ion-exchange polymer films intended for use in future molecular-scale spectroscopic studies of bipolar membranes. The ability of thin ionomer film assemblies to exclude mobile ions charged similarly to the polymer (co-ions) and accumulate ions charged opposite to the polymer (counterions) was scrutinized through use of the diffusible redox probe molecules [Ru(NH3)6]3+and [IrCl6]2−. With the anion exchange membrane (AEM) phase supported on a carbon disk electrode, bipolar junctions formed by addition of a cation exchange membrane (CEM) overlayer demonstrated high selectivity toward redox ion extraction and exclusion. For junctions formed using a Fumion®AEM phase and a Nafion®overlayer, [IrCl6]2−ions exchanged into Fumion®prior to Nafion®overcoating remained entrapped and the Fumion®excluded [Ru(NH3)6]3+ions for durability testing periods of more than 20 h under conditions of interest for eventualin situspectral measurements. Experiments with the Sustainion®anion exchange ionomer uncovered evidence for [IrCl6]2−ion coordination to pendant imidazolium groups on the polymer. A cyclic voltammetric method for estimation of the effective diffusion coefficient and equilibrium extraction constant for redox active probe ions within inert, uniform density electrode-supported thin films was applied to examine charge transport mechanisms.more » « less
- 
            Abstract Iron ion batteries using Fe2+as a charge carrier have yet to be widely explored, and they lack high‐performing Fe2+hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4∙2H2O can reversibly host Fe2+with a high specific capacity of 100 mAh g−1and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4∙2H2O's capacity of hosting Zn2+fades precipitously over tens of cycles. VOPO4∙2H2O stores Fe2+with a unique mechanism, where upon contacting the electrolyte by the VOPO4∙2H2O electrode, Fe2+ions from the electrolyte get oxidized to Fe3+ions that are inserted and trapped in the VOPO4∙2H2O structure in an electroless redox reaction. The trapped Fe3+ions, thus, bolt the layered structure of VOPO4∙2H2O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+. The findings offer a new strategy to use a redox‐active ion charge carrier to stabilize the layered electrode materials.more » « less
- 
            Abstract FeN4moieties embedded in partially graphitized carbon are the most efficient platinum group metal free active sites for the oxygen reduction reaction in acidic proton‐exchange membrane fuel cells. However, their formation mechanisms have remained elusive for decades because the Fe−N bond formation process always convolutes with uncontrolled carbonization and nitrogen doping during high‐temperature treatment. Here, we elucidate the FeN4site formation mechanisms through hosting Fe ions into a nitrogen‐doped carbon followed by a controlled thermal activation. Among the studied hosts, the ZIF‐8‐derived nitrogen‐doped carbon is an ideal model with well‐defined nitrogen doping and porosity. This approach is able to deconvolute Fe−N bond formation from complex carbonization and nitrogen doping, which correlates Fe−N bond properties with the activity and stability of FeN4sites as a function of the thermal activation temperature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
