Abstract The optimal local truncation error method (OLTEM) has been developed for 2‐D time‐dependent elasticity problems on irregular domains and trivial unfitted Cartesian meshes. Compact nine‐point uniform and nonuniform stencils (similar to those for linear finite elements on uniform meshes) are used with OLTEM. The stencil coefficients are assumed to be unknown and are calculated by the minimization of the local truncation error. It is shown that the second order of accuracy is the maximum possible accuracy for nine‐point stencils independent of the numerical technique used for their derivations. The special treatment of the Neumann boundary conditions has been developed that does not increase the size of the stencils. The cases of the nondiagonal and diagonal mass matrices are considered for OLTEM. The results of numerical examples are in agreement with the theoretical findings. They also show that due to the minimization of the local truncation error, OLTEM with the nondiagonal mass matrix is much more accurate than linear finite elements and than quadratic and cubic finite elements (up to the engineering accuracy of 0.1%–1%) at the same numbers of degrees of freedom. The proposed numerical technique can be efficiently used for many engineering applications including geomechanics.
more »
« less
Optimal local truncation error method to solution of 2‐D time‐independent elasticity problems with optimal accuracy on irregular domains and unfitted Cartesian meshes
Abstract Recently we have developed the optimal local truncation error method (OLTEM) for scalar PDEs on irregular domains and unfitted Cartesian meshes. Here, OLTEM is extended to a much more general case of a system of PDEs for the 2‐D time‐independent elasticity equations on irregular domains. Compact 9‐point uniform and nonuniform stencils (with the computational costs of linear finite elements) are used with OLTEM. The stencil coefficients are assumed to be unknown and are calculated by the minimization of the local truncation error. It is shown that the second order of accuracy is the maximum possible accuracy for 9‐point stencils independent of the numerical technique used for their derivations. The special treatment of the Neumann boundary conditions has been developed that does not increase the size of the stencils. The numerical examples are in agreement with the theoretical findings. They also show that due to the minimization of the local truncation error, OLTEM is much more accurate than linear finite elements and than quadratic finite elements (up to engineering accuracy of 0.1%–1%) at the same numbers of degrees of freedom. Due to the computational efficiency and trivial unfitted Cartesian meshes that are independent of irregular domains, the proposed technique with no remeshing for the shape change of irregular domains will be effective for many engineering applications.
more »
« less
- Award ID(s):
- 1935452
- PAR ID:
- 10446074
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- Volume:
- 123
- Issue:
- 11
- ISSN:
- 0029-5981
- Page Range / eLocation ID:
- p. 2610-2630
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Purpose The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for real-world problems with complex interfaces; and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh generators for complex geometry). Design/methodology/approach This study extends the recently developed optimal local truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more general case of discontinuous coefficients that can be applied to domains with different material properties (e.g. different inclusions, multi-material structural components, etc.). This study develops OLTEM using compact 9-point and 25-point stencils that are similar to those for linear and quadratic finite elements. In contrast to finite elements and other known numerical techniques for interface problems with conformed and unfitted meshes, OLTEM with 9-point and 25-point stencils and unfitted Cartesian meshes provides the 3-rd and 11-th order of accuracy for irregular interfaces, respectively; i.e. a huge increase in accuracy by eight orders for the new 'quadratic' elements compared to known techniques at similar computational costs. There are no unknowns on interfaces between different materials; the structure of the global discrete system is the same for homogeneous and heterogeneous materials (the difference in the values of the stencil coefficients). The calculation of the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of OLTEM at a given stencil width. The numerical results with irregular interfaces show that at the same number of degrees of freedom, OLTEM with the 9-points stencils is even more accurate than the 4-th order finite elements; OLTEM with the 25-points stencils is much more accurate than the 7-th order finite elements with much wider stencils and conformed meshes. Findings The significant increase in accuracy for OLTEM by one order for 'linear' elements and by 8 orders for 'quadratic' elements compared to that for known techniques. This will lead to a huge reduction in the computation time for the problems with complex irregular interfaces. The use of trivial unfitted Cartesian meshes significantly simplifies the solution and reduces the time for the data preparation (no need in complicated mesh generators for complex geometry). Originality/value It has been never seen in the literature such a huge increase in accuracy for the proposed technique compared to existing methods. Due to a high accuracy, the proposed technique will allow the direct solution of multiscale problems without the scale separation.more » « less
-
Immersed finite element methods are designed to solve interface problems on interface- unfitted meshes. However, most of the study, especially analysis, is mainly limited to the two-dimension case. In this paper, we provide an a priori analysis for the trilinear immersed finite element method to solve three-dimensional elliptic interface problems on Cartesian grids consisting of cuboids. We establish the trace and inverse inequalities for trilinear IFE functions for interface elements with arbitrary interface-cutting configuration. Optimal a priori error estimates are rigorously proved in both energy and L2 norms, with the constant in the error bound independent of the interface location and its dependence on coefficient contrast explicitly specified. Numerical examples are provided not only to verify our theoretical results but also to demonstrate the applicability of this IFE method in tackling some real-world 3D interface models.more » « less
-
The primal variational formulation of the fourth-order Cahn-Hilliard equation requires C1-continuous finite element discretizations, e.g., in the context of isogeometric analysis. In this paper, we explore the variational imposition of essential boundary conditions that arise from the thermodynamic derivation of the Cahn-Hilliard equation in primal variables. Our formulation is based on the symmetric variant of Nitsche's method, does not introduce additional degrees of freedom and is shown to be variationally consistent. In contrast to strong enforcement, the new boundary condition formulation can be naturally applied to any mapped isogeometric parametrization of any polynomial degree. In addition, it preserves full accuracy, including higher-order rates of convergence, which we illustrate for boundary-fitted discretizations of several benchmark tests in one, two and three dimensions. Unfitted Cartesian B-spline meshes constitute an effective alternative to boundary-fitted isogeometric parametrizations for constructing C1-continuous discretizations, in particular for complex geometries. We combine our variational boundary condition formulation with unfitted Cartesian B-spline meshes and the finite cell method to simulate chemical phase segregation in a composite electrode. This example, involving coupling of chemical fields with mechanical stresses on complex domains and coupling of different materials across complex interfaces, demonstrates the flexibility of variational boundary conditions in the context of higher-order unfitted isogeometric discretizations.more » « less
-
Many geometry processing techniques require the solution of partial differential equations (PDEs) on manifolds embedded in\(\mathbb {R}^2 \)or\(\mathbb {R}^3 \), such as curves or surfaces. Suchmanifold PDEsoften involve boundary conditions (e.g., Dirichlet or Neumann) prescribed at points or curves on the manifold’s interior or along the geometric (exterior) boundary of an open manifold. However, input manifolds can take many forms (e.g., triangle meshes, parametrizations, point clouds, implicit functions, etc.). Typically, one must generate a mesh to apply finite element-type techniques or derive specialized discretization procedures for each distinct manifold representation. We propose instead to address such problems in a unified manner through a novel extension of theclosest point method(CPM) to handle interior boundary conditions. CPM solves the manifold PDE by solving a volumetric PDE defined over the Cartesian embedding space containing the manifold, and requires only a closest point representation of the manifold. Hence, CPM supports objects that are open or closed, orientable or not, and of any codimension. To enable support for interior boundary conditions we derive a method that implicitly partitions the embedding space across interior boundaries. CPM’s finite difference and interpolation stencils are adapted to respect this partition while preserving second-order accuracy. Additionally, we develop an efficient sparse-grid implementation and numerical solver that can scale to tens of millions of degrees of freedom, allowing PDEs to be solved on more complex manifolds. We demonstrate our method’s convergence behaviour on selected model PDEs and explore several geometry processing problems: diffusion curves on surfaces, geodesic distance, tangent vector field design, harmonic map construction, and reaction-diffusion textures. Our proposed approach thus offers a powerful and flexible new tool for a range of geometry processing tasks on general manifold representations.more » « less
An official website of the United States government
