skip to main content

This content will become publicly available on December 31, 2022

Title: 3rd and 11th orders of accuracy of ‘linear’ and ‘quadratic’ elements for Poisson equation with irregular interfaces on Cartesian meshes
Purpose The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for real-world problems with complex interfaces; and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh generators for complex geometry). Design/methodology/approach This study extends the recently developed optimal local truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more general case of discontinuous coefficients that can be applied to domains with different material properties (e.g. different inclusions, multi-material structural components, etc.). This study develops OLTEM using compact 9-point and 25-point stencils that are similar to those for linear and quadratic finite elements. In contrast to finite elements and other known numerical techniques for interface problems with conformed and unfitted meshes, OLTEM with 9-point and 25-point stencils and unfitted Cartesian meshes provides the 3-rd and 11-th order of accuracy for irregular interfaces, respectively; i.e. a huge increase in accuracy by eight orders for the new 'quadratic' elements compared to known techniques at similar computational costs. There are no unknowns on interfaces between different materials; the structure of the global discrete system is the more » same for homogeneous and heterogeneous materials (the difference in the values of the stencil coefficients). The calculation of the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of OLTEM at a given stencil width. The numerical results with irregular interfaces show that at the same number of degrees of freedom, OLTEM with the 9-points stencils is even more accurate than the 4-th order finite elements; OLTEM with the 25-points stencils is much more accurate than the 7-th order finite elements with much wider stencils and conformed meshes. Findings The significant increase in accuracy for OLTEM by one order for 'linear' elements and by 8 orders for 'quadratic' elements compared to that for known techniques. This will lead to a huge reduction in the computation time for the problems with complex irregular interfaces. The use of trivial unfitted Cartesian meshes significantly simplifies the solution and reduces the time for the data preparation (no need in complicated mesh generators for complex geometry). Originality/value It has been never seen in the literature such a huge increase in accuracy for the proposed technique compared to existing methods. Due to a high accuracy, the proposed technique will allow the direct solution of multiscale problems without the scale separation. « less
Authors:
;
Award ID(s):
1935452
Publication Date:
NSF-PAR ID:
10346121
Journal Name:
International Journal of Numerical Methods for Heat & Fluid Flow
Volume:
32
Issue:
8
Page Range or eLocation-ID:
2719 to 2749
ISSN:
0961-5539
Sponsoring Org:
National Science Foundation
More Like this
  1. The primal variational formulation of the fourth-order Cahn-Hilliard equation requires C1-continuous finite element discretizations, e.g., in the context of isogeometric analysis. In this paper, we explore the variational imposition of essential boundary conditions that arise from the thermodynamic derivation of the Cahn-Hilliard equation in primal variables. Our formulation is based on the symmetric variant of Nitsche's method, does not introduce additional degrees of freedom and is shown to be variationally consistent. In contrast to strong enforcement, the new boundary condition formulation can be naturally applied to any mapped isogeometric parametrization of any polynomial degree. In addition, it preserves full accuracy, including higher-order rates of convergence, which we illustrate for boundary-fitted discretizations of several benchmark tests in one, two and three dimensions. Unfitted Cartesian B-spline meshes constitute an effective alternative to boundary-fitted isogeometric parametrizations for constructing C1-continuous discretizations, in particular for complex geometries. We combine our variational boundary condition formulation with unfitted Cartesian B-spline meshes and the finite cell method to simulate chemical phase segregation in a composite electrode. This example, involving coupling of chemical fields with mechanical stresses on complex domains and coupling of different materials across complex interfaces, demonstrates the flexibility of variational boundary conditions in the context ofmore »higher-order unfitted isogeometric discretizations.« less
  2. We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surface-based coordinate systems. For problems involving tracer transport in a given velocity field, the semi-Lagrangian framework allows these new methods to avoid the use of any stabilization terms (such as hyperviscosity) during time-integration, thus reducing the number of parameters that have to be tuned. The three new methods are based on interpolation using 1) global RBFs, 2) local RBF stencils, and 3) RBF partition of unity. For the latter two of these methods, we find that it is crucial to include some low degree spherical harmonics in the interpolants. Standard test cases consisting of solid body rotation and deformational flow are used to compare and contrast the methods in terms of their accuracy, efficiency, conservation properties, and dissipation/dispersion errors. For global RBFs, spectral spatial convergence is observed for smooth solutions on quasi-uniform nodes, while high-order accuracy is observed for the local RBF stencil and partition of unitymore »approaches.« less
  3. Immersed finite element methods are designed to solve interface problems on interface- unfitted meshes. However, most of the study, especially analysis, is mainly limited to the two-dimension case. In this paper, we provide an a priori analysis for the trilinear immersed finite element method to solve three-dimensional elliptic interface problems on Cartesian grids consisting of cuboids. We establish the trace and inverse inequalities for trilinear IFE functions for interface elements with arbitrary interface-cutting configuration. Optimal a priori error estimates are rigorously proved in both energy and L2 norms, with the constant in the error bound independent of the interface location and its dependence on coefficient contrast explicitly specified. Numerical examples are provided not only to verify our theoretical results but also to demonstrate the applicability of this IFE method in tackling some real-world 3D interface models.
  4. Stencil computations are widely used in the scientific simulation domain, and their performance is critical to the overall efficiency of many large-scale numerical applications. Many optimization techniques, most of them varying strategies of tiling and parallelization, exist to systematically enhance the efficiency of stencil computations. However, the effective- ness of these optimizations vary significantly depending on the wide range of properties demonstrated by the different stencils. This paper studies several well-known optimization strategies for stencils and presents a new approach to effectively guide the composition of these optimizations, by modeling their interactions with four domain-level proper- ties of stencils: spatial dimensionality, temporal order, order of accuracy, and directional dependence. When using our prediction model to guide optimizations for five real-world stencil applications, we were able to identify optimization strategies that outperformed two highly optimized stencil libraries by an average of 2.4x.
  5. In this paper, we study the central discontinuous Galerkin (DG) method on overlapping meshes for second order wave equations. We consider the first order hyperbolic system, which is equivalent to the second order scalar equation, and construct the corresponding central DG scheme. We then provide the stability analysis and the optimal error estimates for the proposed central DG scheme for one- and multi-dimensional cases with piecewise P k elements. The optimal error estimates are valid for uniform Cartesian meshes and polynomials of arbitrary degree k  ≥ 0. In particular, we adopt the techniques in Liu et al . ( SIAM J. Numer. Anal. 56 (2018) 520–541; ESAIM: M2AN 54 (2020) 705–726) and obtain the local projection that is crucial in deriving the optimal order of convergence. The construction of the projection here is more challenging since the unknowns are highly coupled in the proposed scheme. Dispersion analysis is performed on the proposed scheme for one dimensional problems, indicating that the numerical solution with P 1 elements reaches its minimum with a suitable parameter in the dissipation term. Several numerical examples including accuracy tests and long time simulation are presented to validate the theoretical results.