skip to main content


Title: A Laser‐ARPES View of the 2D Electron Systems at LaAlO 3 /SrTiO 3 and Al/SrTiO 3 Interfaces
Abstract

The electronic structure of the two‐dimensional electron system (2DES) found at the Al/SrTiO3(Al/STO) and LaAlO3/SrTiO3(LAO/STO) interfaces is measured by means of laser angle resolved photoemission spectroscopy, taking advantage of the large photoelectron escape depth at low photon energy to probe these buried interfaces. The possibility of tuning the electronic density in Al/STO by varying the Al layer thickness is demonstrated, and it is shown that the electronic structure evolution is well described by self‐consistent tight binding supercell calculations, but differs qualitatively from a rigid band shift model. It is shown that both 2DES are strongly coupled to longitudinal optical phonons, in agreement with previous reports of a polaronic ground state in similar STO based 2DESs. Tuning the electronic density in Al/STO to match that of LAO/STO and comparing both systems, it is estimated that the intrinsic LAO/STO 2DES has a bare band width of ≈60 meV and a carrier density of ≈6 × 1013cm−2.

 
more » « less
NSF-PAR ID:
10446110
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
8
Issue:
7
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The behavior of polar LaMnO3(LMO) thin films deposited epitaxially on nonpolar SrTiO3(001) (STO) is dictated by both the LMO/STO band alignment and the chemistry of the Mn cation. Using in situ X‐ray photoelectron spectroscopy, the valence band offset (VBO) of LMO/STO heterojunctions is directly measured as a function of thickness, and found that the VBO is 2.5 eV for thicker (≥3 u.c.) films. No evidence of a built‐in electric field in LMO films of any thickness is found. Measurements of the Mn valence by MnL‐edge X‐ray absorption spectroscopy and by spatially resolved electron energy loss spectra in scanning transmission electron microscopy images reveal that Mn2+is present at the LMO surface, but not at the LMO/STO interface. These results are corroborated by density functional theory simulations that confirm a VBO of ≈2.5 eV for both ideal and intermixed interfaces. A model is proposed for the behavior of polar/nonpolar LMO/STO heterojunctions in which the polar catastrophe is alleviated by the formation of oxygen vacancies at the LMO surface.

     
    more » « less
  2. We investigate the surface electronic structure of SrTiO 3 (STO) films grown by a hybrid molecular beam epitaxy that are both stoichiometric and nonstoichiometric by means of x-ray photoelectron spectroscopy and electron energy loss spectroscopy. Increasing the fraction of the surface that is terminated with an SrO layer is correlated with a decrease in the chemical potential whereby the valence band maximum moves closer to the Fermi level, but without a significant change in the bandgap. Inasmuch as SrO-terminated STO (001) has previously been shown to act as an electron scavenger in which carriers from the bulk are trapped, we argue that the high fraction of SrO in the terminal layer is what lowers the chemical potential in Sr-rich STO. Our experimental results provide important insights into various physical phenomena that can occur on STO (001) surfaces and their effect on bulk electronic properties. 
    more » « less
  3. Abstract

    Understanding interactions between externally applied electric fields and the interfacial structures of nanoscale ceramics is important for controlling their functional properties. In ceramic oxides, functional properties are determined by oxygen vacancy concentrations near and within grain‐boundary core structures. In this study it is shown that the application of electrostatic fields ranging from 0 to nominally 170 V/cm during diffusion bonding of bicrystals alters the atomic and electronic core structures of (100) twist grain boundaries in SrTiO3. The applied electric field strength affects local oxygen vacancy concentrations and ordering of the oxygen sublattice. Results for this model system indicate that electrostatic fields applied during ceramic manufacturing can be employed as a new processing parameter to tailor defect structure configurations and obtain unprecedented ceramic microstructures. The ability to manipulate interface configurations with electric fields in the absence of any sintering additives may have far reaching implications for tuning polarization and band structures in electroceramics while avoiding effects of often unwanted dopants.

     
    more » « less
  4. Abstract

    Strongly correlated electronic systems exhibit a wealth of unconventional behavior stemming from strong electron-electron interactions. The LaAlO3/SrTiO3(LAO/STO) heterostructure supports rich and varied low-temperature transport characteristics including low-density superconductivity, and electron pairing without superconductivity for which the microscopic origins is still not understood. LAO/STO also exhibits inexplicable signatures of electronic nematicity via nonlinear and anomalous Hall effects. Nanoscale control over the conductivity of the LAO/STO interface enables mesoscopic experiments that can probe these effects and address their microscopic origins. Here we report a direct correlation between electron pairing without superconductivity, anomalous Hall effect and electronic nematicity in quasi-1D ballistic nanoscale LAO/STO Hall crosses. The characteristic magnetic field at which the Hall coefficient changes directly coincides with the depairing of non-superconducting pairs showing a strong correlation between the two distinct phenomena. Angle-dependent Hall measurements further reveal an onset of electronic nematicity that again coincides with the electron pairing transition, unveiling a rotational symmetry breaking due to the transition from paired to unpaired phases at the interface. The results presented here highlights the influence of preformed electron pairs on the transport properties of LAO/STO and provide evidence of the elusive pairing “glue” that gives rise to electron pairing in SrTiO3-based systems.

     
    more » « less
  5. Abstract

    Due to the coexistence of many emergent phenomena, including 2D superconductivity and a large Rashba spin‐orbit coupling, 5d transition metal oxides‐based two‐dimensional electron systems (2DESs) have been prospected as one of the potential intrants for modern electronics. However, despite the lighter electron mass, the mobility of carriers, a key requisite for high‐performance devices, in 5d‐oxides devices remains far behind their 3d‐oxides analogs. The carriers’ mobility in these oxides is significantly hampered by the inevitable presence of defects. Here, very high mobility (≈22 650 cm2V−1s−1) of 5d‐2DES confined at the LaAlO3/KTaO3interface is reported. The high mobility, which is beyond the values observed in SrTiO32DESs in the same carrier‐density range, is achieved using the ionic‐liquid gating at room temperature. The authors postulate that the ionic‐liquid gating affects the oxygen vacancies and efficiently reduces any disorder at the interface. Investigating density and mobility in a broad range of back‐gate voltage, the authors reveal that the mobility follows the power‐law µ ∝ n1.2, indicating the very high quality of ionic‐liquid‐gated LaAlO3/KTaO3devices, consistent with the postulate. Furthermore, the analysis of the quantum oscillations confirms that the high‐mobility electrons occupy the electronic sub‐bands emerging from the Ta:5d orbitals of KTaO3.

     
    more » « less