Electrophoresis or electrochromatography carried out in nanometer columns (width and depth) offers some attractive benefits compared to microscale columns. These advantages include unique separation mechanisms that are scale dependent, fast separation times, and simpler workflow due to the lack of a need for column packing and/or wall coatings to create a stationary phase. We report the use of thermoplastics, in this case PMMA, as the substrate for separating single‐stranded DNAs (ssDNAs). Electrophoresis nanochannels were created in PMMA using nanoimprint lithography (NIL), which can produce devices at lower cost and in a higher production mode compared to the fabrication techniques required for glass devices. The nanochannel column in PMMA was successful in separating ssDNAs in free solution that was not possible using microchip electrophoresis in PMMA. The separation could be performed in <1 s with resolution >1.5 when carried out using at an electric field strength of 280 V/cm and an effective column length of 60 μm (100 nm × 100 nm, depth and width). The ssDNAs transport through the PMMA column was driven electrokinetically under the influence of an EOF. The results indicated that the separation was dominated by chromatographic effects using an open tubular nano‐electrochromatography (OT‐NEC) mode of separation. Interesting to these separations was that no column packing was required nor a wall coating to create the stationary phase; the separation was affected using the native polymer that was UV/O3activated and an aqueous buffer mobile phase.
Reversed phase and size‐exclusion chromatography methods are commonly used for protein separations, although they are based on distinctly different principles. Reversed phase methods yield hydrophobicity‐based (loosely‐termed) separation of proteins on porous supports, but tend to be limited to proteins with modest molecular weights based on mass transfer limitations. Alternatively, size‐exclusion provides complementary benefits in the separation of higher mass proteins based on entropic, not enthalpic, processes, but tend to yield limited peak capacities. In this study, microbore columns packed with a novel trilobal polypropylene capillary‐channeled polymer fiber were used in a reversed phase modality for the separation of polypeptides and proteins of molecular weights ranging from 1.4 to 660 kDa. Chromatographic parameters including gradient times, flow rates, and trifluoroacetic acid concentrations in the mobile phase were optimized to maximize resolution and throughput. Following optimization, the performance of the trilobal fiber column was compared to two commercial‐sourced columns, a superficially porous C4‐derivatized silica and size exclusion, both of which are sold specifically for protein separations and operated according to the manufacturer‐specified conditions. In comparison to the commercial columns, the fiber‐based column yielded better separation performance across the entirety of the suite, at much lower cost and shorter separation times.
more » « less- Award ID(s):
- 2107882
- PAR ID:
- 10446184
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Separation Science
- Volume:
- 45
- Issue:
- 9
- ISSN:
- 1615-9306
- Page Range / eLocation ID:
- p. 1502-1513
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Mass spectrometry (MS)‐based top‐down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post‐translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high‐resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS‐PAGE‐based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI‐MS) with capillary zone electrophoresis (CZE)‐MS/MS for high‐resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS‐PAGE gel and follow‐up cleanup as well as CZE‐MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high‐resolution separation and characterization of histone proteoforms. SDS‐PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high‐resolution separations of SDS‐PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.
-
Abstract The development of organic porous polymer monoliths represents an alternative approach to stationary phase design. The use of these materials has helped to rekindle interest in capillary electrochromatography. Although a large number of investigations have explored different monolith recipes, polymerization conditions, and application challenges, few investigations have addressed the fundamentals of this separation mode with this type of material. This study addresses the thermodynamics of the reversed phase retention mechanism on 100% butyl acrylate and 1:3 butyl:lauryl acrylate (volume/volume ratio) porous polymer monoliths used in a capillary electrochromatography mode. Linear van't Hoff plots yield enthalpies of retention of −3.9 to −14.3 kJ/mol on two different, but related columns for five selected hydrophobic analytes across a thirty degree temperature range. Minimum plate heights were only moderately impacted over this temperature range.
-
Abstract We have developed a rapid, low‐cost, and simple separation strategy to separate extracellular vesicles (EVs) from a small amount of serum (i.e.,<100 μL) with minimal contamination by serum proteins and lipoprotein particles to meet the high purity requirement for EV proteome analysis. EVs were separated by a novel polyester capillary channel polymer (PET C‐CP) fiber phase/hydrophobic interaction chromatography (HIC) method which is rapid and can process small size samples. The collected EV fractions were subjected to a post‐column cleanup protocol using a centrifugal filter to perform buffer exchange and eliminate potential coeluting non‐EV proteins while minimizing EV sample loss. Downstream characterization demonstrated that our current strategy can separate EVs with the anticipated exosome‐like particle size distribution and high yield (∼1 × 1011EV particles per mL of serum) in approximately 15 min. Proteome profiling of the EVs reveals that a group of genuine EV components were identified that have significantly less high‐abundance blood proteins and lipoprotein particle contamination in comparison to traditional separation methods. The use of this methodology appears to address the major challenges facing EV separation for proteomics analysis. In addition, the EV post‐column cleanup protocol proposed in the current work has the potential to be combined with other separation methods, such as ultracentrifugation (UC), to further purify the separated EV samples.
-
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.more » « less