Abstract Reversed phase and size‐exclusion chromatography methods are commonly used for protein separations, although they are based on distinctly different principles. Reversed phase methods yield hydrophobicity‐based (loosely‐termed) separation of proteins on porous supports, but tend to be limited to proteins with modest molecular weights based on mass transfer limitations. Alternatively, size‐exclusion provides complementary benefits in the separation of higher mass proteins based on entropic, not enthalpic, processes, but tend to yield limited peak capacities. In this study, microbore columns packed with a novel trilobal polypropylene capillary‐channeled polymer fiber were used in a reversed phase modality for the separation of polypeptides and proteins of molecular weights ranging from 1.4 to 660 kDa. Chromatographic parameters including gradient times, flow rates, and trifluoroacetic acid concentrations in the mobile phase were optimized to maximize resolution and throughput. Following optimization, the performance of the trilobal fiber column was compared to two commercial‐sourced columns, a superficially porous C4‐derivatized silica and size exclusion, both of which are sold specifically for protein separations and operated according to the manufacturer‐specified conditions. In comparison to the commercial columns, the fiber‐based column yielded better separation performance across the entirety of the suite, at much lower cost and shorter separation times.
more »
« less
This content will become publicly available on August 1, 2026
Preparation, characterization, and simulation of continuous stationary phase gradients on butyl functionalized liquid chromatography columns for protein and peptide separations
This work seeks to explore the capabilities of stationary phase gradients (SPGs) for the large-molecule chromatographic separations of proteins and peptides through a combination of experimental studies and simulations. Continuous SPGs are fabricated on commercial Phenomenex Jupiter C4 columns using the time-based infusion of trifluoroacetic acid through the column. The resultant gradients are characterized using smallmolecule chromatography and physical gradient profiling via thermogravimetric analysis. The gradient columns are then tested using two different protein analyte mixtures and a peptide standard analyte mixture to examine the efficacy of the separations. Collected experimental data from these tests are used to establish fitted parameters for the Linear Solvent Strength (LSS) model to computationally predict the retention behavior of the analytes on the gradient columns. Successful chromatographic separation of all three analyte mixtures was achieved. The re-parameterized LSS model successfully simulates the analyte retention on the gradient columns with only minor deviations from observed experimental retention data. Collectively, this work demonstrates the ability to create a C4 continuous stationary phase gradient starting with a uniform commercial column that can be effectively used to separate mixtures of biomolecules, and the ability to accurately simulate and predict retention times. The computational model described herein could be used to effectively predict retention behavior in silico, significantly reducing the time needed for experimental design.
more »
« less
- Award ID(s):
- 2305102
- PAR ID:
- 10615067
- Publisher / Repository:
- Journal of Chromatography A
- Date Published:
- Journal Name:
- Journal of Chromatography A
- Volume:
- 1756
- Issue:
- C
- ISSN:
- 0021-9673
- Page Range / eLocation ID:
- 466048
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Presented here is the first continuous separation of microparticles and cells of similar characteristics employing linear and nonlinear electrokinetic phenomena in an insulator-based electrokinetic (iEK) system. By utilizing devices with insulating features, which distort the electric field distribution, it is possible to combine linear and nonlinear EK phenomena, resulting in highly effective separation schemes that leverage the new advancements in nonlinear electrophoresis. This work combines mathematical modeling and experimentation to separate four distinct binary mixtures of particles and cells. A computational model with COMSOL Multiphysics was used to predict the retention times (tR,p) of the particles and cells in iEK devices. Then, the experimental separations were carried out using the conditions identified with the model, where the experimental retention time (tR,e) of the particles and cells was measured. A total of four distinct separations of binary mixtures were performed by increasing the level of difficulty. For the first separation, two types of polystyrene microparticles, selected to mimic Escherichia coli and Saccharomyces cerevisiae cells, were separated. By leveraging the knowledge gathered from the first separation, a mixture of cells of distinct domains and significant size differences, E. coli and S. cerevisiae, was successfully separated. The third separation also featured cells of different domains but closer in size: Bacillus cereus versus S. cerevisiae. The last separation included cells in the same domain and genus, B. cereus versus Bacillus subtilis. Separation results were evaluated in terms of number of plates (N) and separation resolution (Rs), where Rs values for all separations were above 1.5, illustrating complete separations. Experimental results were in agreement with modeling results in terms of retention times, with deviations in the 6–27% range, while the variation between repetitions was between 2 and 18%, demonstrating good reproducibility. This report is the first prediction of the retention time of cells in iEK systems.more » « less
-
Protein A (ProA) chromatography is a mainstay in the analytical and preparative scale isolation/purification of monoclonal antibodies (mAbs). One area of interest is continuous processing or continuous chromatography, where ProA chromatography is used in the large-scale purification of mAbs. However, filtration is required prior to all ProA isolations to remove large particulates in cell culture supernatant, consisting of a mixture of cell debris, host cell contaminants, media components, etc. Currently, in-line filters are used to remove particles in the supernatant, requiring replacement over time due to fouling; regardless of the scale. Here we demonstrate the ProA isolation of unfiltered Chinese hamster ovary (CHO) cell media using capillary-channel polymer (C-CP) fiber stationary phases modified with S. aureus Protein A (rSPA). The base polymer of the analytical scale C-CP columns costs ~$5 per 30 cm column, and when modified with ProA, the base cost is ~$25 per 30 cm column, a cost-effective option in comparison to analytical-scale commercial columns. To directly sample unfiltered media, a 5 cm gap was created at the head of the C-CP column, where the large particulates are trapped, while molecular solutes flow through the capillary channels without sacrifice in analytical performance, mAb loading capacity, or backpressure increases. The binding capacity of the gap ProA C-CP column was ~ 2 mg mL− 1 of IgG per bed volume. The same analytical column could be operated after processing a total of ~ 56 column bed volumes of supernatant (>25 analytical cycles) without the need for caustic clean-in-place processing.more » « less
-
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations.more » « less
-
A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT MRF) systems with CFT columns and steel wide flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT MRF considers second order geometric effects from the gravity load bearing system using a lean on column. The experimental results from the testing of a four story CFT MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear story drift response as well as the column, beam and connection moment rotation response, but overpredicted the inelastic deformation of the panel zone.more » « less
An official website of the United States government
