Abstract The geochemistry of tropical coral skeletons is widely used in paleoclimate reconstructions. However, sub‐aerially exposed corals may be affected by diagenesis, altering the aragonite skeleton through partial dissolution, or infilling of secondary minerals like calcite. We analyzed the impact of intra‐skeletal calcite on the geochemistry (δ18O, Sr/Ca, Mg/Ca, Li/Mg, Li/Ca, U/Ca, B/Ca, Ba/Ca, and Mn/Ca) of a sub‐aerially exposedPoritessp. coral. Each micro‐milled coral sample was split into two aliquots for geochemistry and X‐ray diffraction (XRD) analysis to quantify the direct impact of calcite on geochemistry. We modified the sample loading technique for XRD to detect low calcite levels (1%–2%; total uncertainty = 0.33%, 2σ) in small samples (∼7.5 mg). Calcite content ranged from 0% to 12.5%, with higher percentages coinciding with larger geochemical offsets. Sr/Ca, Li/Mg, Li/Ca, and δ18O‐derived sea‐surface temperature (SST) anomalies per 1% calcite were +0.43°C, +0.24°C, +0.11°C, and +0.008°C, respectively. A 3.6% calcite produces a Sr/Ca‐SST signal commensurate with local SST seasonality (∼1.5°C), which we propose as the cut‐off level for screening calcite diagenesis in paleo‐temperature reconstructions. Inclusion of intra‐skeletal calcite decreases B/Ca, Ba/Ca, and U/Ca values, and increases Mg/Ca values, and can therefore impact reconstructions of paleoclimate and the carbonate chemistry of the semi‐isolated calcifying fluid in corals. This study emphasizes the importance of quantifying fine‐scale calcite diagenesis to identify coral preservation levels and assure robust paleoclimate reconstructions.
more »
« less
The Hydrochemical Signature of Incongruent Weathering in Iceland
Abstract Basaltic watersheds such as those found in Iceland are thought to be important sites of CO2sequestration via silicate weathering. However, determining the magnitude of CO2uptake depends on accurately interpreting river chemistry. Here, we compile geochemical data from Iceland and use them to constrain weathering processes. Specifically, we use a newly developed inverse model to quantify solute supply from rain and hydrothermal fluids as well as allow for variable silicate end‐member compositions, solutes to be removed via secondary phase formation, and some Ca to be sourced from carbonate dissolution. While some of these processes have been considered previously, they have not been considered together allowing us to newly determine their relative contributions. We find that weathering in Iceland is incongruent in two ways. First, solute release from primary silicates is characterized by a higher proportion of Na than would be expected from bulk basalts, which may reflect preferential weathering or some contribution from rhyolites. This Na enrichment is further enhanced by preferential Mg and K uptake by secondary phases. No samples in our data set (n = 537) require carbonate dissolution even if isotopic data (δ26Mg,δ30Si,δ44Ca, and/or87Sr/86Sr) are included. While some carbonate weathering is allowable, silicate weathering likely dominates. The complexity we observe in Iceland underscores the need for inverse models to account for a wide range of processes and end‐members. Given that riverine fluxes from Iceland are more Na‐rich than expected for congruent basalt weathering, the characteristic timescale of CO2drawdown is likely affected.
more »
« less
- Award ID(s):
- 2017106
- PAR ID:
- 10446238
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 127
- Issue:
- 6
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The West Pacific Warm Pool (WPWP)'s response to increasedpCO2during the Pliocene is a key model validation target. Different temperature proxies show different trends: The foraminiferal Mg/Ca sea surface temperature (SST) record shows Pliocene WPWP temperatures ~1.2°C cooler than today (Wara et al., 2005,https://doi.org/10.1126/science.1112596), whereas a TEX86study finds a cooling trend and claims the Pliocene WPWP was warmer than today (Zhang et al., 2014,https://doi.org/10.1126/science.1246172). We focus on understanding biases in Mg/Ca data as the best way to constrain the temperature of the Pliocene WPWP. The strongest nonthermal controls on foraminiferal Mg/Ca are Mg/Ca of seawater and dissolution. Dissolution, which imparts a cool bias to Mg/Ca temperatures, depends on Δ[CO32−], the difference from the carbonate ion concentration needed for calcite saturation. Thus, Pliocene proxy discrepancies might stem from varying Δ[CO32−] over time. To constrain the effect of changing dissolution on the Mg/Ca data, we collected benthic foraminiferal B/Ca data (a proxy for Δ[CO32−]) from the WPWP spanning 0–5.5 Ma. We find no long‐term trend in Δ[CO32−], but variations above and below the threshold of foraminiferal dissolution yield an ~0.4°C cold bias when averaged over the middle to early Pliocene. Changes in seawater Mg/Ca create an ~0.6°C cold bias in the Pliocene Mg/Ca data. After accounting for these biases, we find that the Pliocene WPWP was ~0.1°C cooler than the late Holocene, ranging from −0.5°C to +0.5°C including all uncertainties. Our reconstruction shows a much lower east‐west temperature gradient in the Pliocene tropical Pacific than today, supporting a permanent El Niño‐like “El Padre” state.more » « less
-
Abstract Rock weathering impacts atmospheric CO2levels with silicate rock dissolution removing CO2,and carbonate dissolution, pyrite oxidation, and organic rock carbon oxidation producing CO2. Glacierization impacts the hydrology and geomorphology of catchments and glacier retreat due to warming can increase runoff and initiate landscape succession. To investigate the impact of these changes on catchment scale weathering CO2balances, we report monthly samples of solute chemistry and continuous discharge records for a sequence of glacierized watersheds draining into Kachemak Bay, Alaska. We partition solute and acid sources and estimate inorganic weathering CO2balances using an inverse geochemical mixing model. Furthermore, we investigated how solutes vary with discharge conditions utilizing a concentration‐runoff framework. We develop an analogous fraction‐runoff framework which allows us to investigate changes in weathering contributions at different flows. Fraction‐runoff relationships suggest kinetic limitations on all reactions in glacierized catchments, and only silicate weathering in less glacierized catchments. Using forest cover as a proxy for landscape age and stability, multiple linear regression shows that faster reactions (pyrite oxidation) contribute less to the solute load with increasing forest cover, whereas silicate weathering (slow reaction kinetics) contributes more. Overall, in glacierized catchments, we find elevated weathering fluxes at high runoff despite significant dilution effects. This makes flux estimates that account for dilution more important in glacierized catchments. Our findings quantify how glaciers modify the inorganic weathering CO2balance of catchments through hydrologic and geomorphic forcings, and support the previous hypothesis that deglaciation will be accompanied by a shift in inorganic weathering CO2balances.more » « less
-
Abstract Lithium isotopes are used to trace weathering intensity, but little is known about the processes that fractionate them in highly weathered settings, where secondary minerals play a dominant role in weathering reactions. To help fill this gap in our knowledge of Li isotope systematics, we investigated Li isotope fractionation at an andesitic catchment in Puerto Rico, where the highest rates of silicate weathering on Earth have been documented. We found the lowest δ7Li values published to date for porewater (−27‰) and bulk regolith (−38‰), representing apparent fractionations relative to parent rock of −31‰ and −42‰, respectively. We also found δ7Li values that are lower in the exchangeable fraction than in the bulk regolith or porewater, the opposite than expected from secondary mineral precipitation. We interpret these large isotopic offsets and the unusual relationships between Li pools as resulting from two distinct weathering processes at different depths in the regolith. At the bedrock‐regolith transition (9.3–8.5 m depth), secondary mineral precipitation preferentially retains the lighter6Li isotope. These minerals then dissolve further up the profile, leaching6Li from the bulk solid, with a total variation of about +50‰withinthe profile, attributable primarily to clay dissolution. Importantly, streamwater δ7Li (about +35‰) is divorced entirely from these regolith weathering processes, instead reflecting deeper weathering reactions (>9.3 m). Our work thus shows that the δ7Li of waters draining highly weathered catchments may reflect bedrock mineralogy and hydrology, rather than weathering intensity in the regolith covering the catchment.more » « less
-
Abstract Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw‐induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw‐driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean‐atmosphere system and increasepCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate () sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact onpCO2. Calculations found that approximately 80% of in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover,34S/32S ratios,13C/12C ratios of dissolved IC, and sulfur X‐ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values ofpCO2over timescales shorter than carbonate compensation (∼104 yr) and, for mainstem samples, higher values ofpCO2over timescales longer than carbonate compensation but shorter than the residence time of marine (∼107 yr). Furthermore, the absolute concentrations of and Mg2+in the Koyukuk River, as well as the ratios of and Mg2+to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale‐dependent feedback on warming.more » « less