Abstract Planetary formation involves highly energetic collisions, the consequences of which set the stage for the ensuing planetary evolution. During accretion, Earth's mantle was largely molten, a so‐called magma ocean, and its oxidation state was determined by equilibration with metal‐rich cores of infalling planetesimals through redox buffering reactions. We test two proposed mechanisms (metal layer and metal droplets) for equilibration in a magma ocean and the resulting oxidation state (Fe3+/ΣFe). Using scaling laws on convective mixing, we find that the metal layer could promote oxidation of a magma ocean, but this layer is too short‐lived to reproduce present‐day mantle Fe3+/ΣFe (2%–6%). Metal droplets produced by the fragmentation of impactor cores can also promote oxidation of a magma ocean. We use Monte Carlo sampling on two possible accretion scenarios to determine the likely range of oxidation states by metal droplets. We find that equilibration between silicate and metal droplets tends toward higher mantle Fe3+/ΣFe than presently observed. To achieve present‐day mantle Fe3+/ΣFe and maintain the degree of equilibration suggested by Hf‐W and U‐Pb systematics (30%–70%), the last (Moon‐forming) giant impact likely did not melt the entire mantle, therefore leaving the mantle stratified in terms of oxidation state after main accretion completes. Furthermore, late accretion impacts during the Hadean (4.5–4.0 Ga) could generate reduced domains in the shallow upper mantle, potentially sustaining surface environments conducive for prebiotic chemistry.
more »
« less
Primordial Helium‐3 Exchange Between Earth's Core and Mantle
Abstract Volatiles from the solar nebula are known to be present in Earth's deep mantle. The core also may contain solar nebula‐derived volatiles, but in unknown amounts. Here we use calculations of volatile ingassing and degassing to estimate the abundance of primordial3He now in the core and track the rate of3He exchange between the core and mantle through Earth history. We apply an ingassing model that includes a silicate magma ocean and an iron‐rich proto‐core coupled to a nebular atmosphere of solar composition to calculate the amounts of3He acquired by the mantle and core during accretion and core formation. Using experimentally determined partitioning between core‐forming metals and silicate magma, we find that dissolution from the nebular atmosphere deposits one or more petagrams of3He into the proto‐core. Following accretion,3He exchange depends on the convective history of the coupled core‐mantle system. We combine determinations of the present‐day surface3He flux with estimates of the present‐day mantle3He abundance, mantle and core heat fluxes, and our ingassed3He abundances in a convective degassing model. According to this model, the mantle3He abundance is evolving toward a statistical steady state, in which surface losses are compensated by enrichments from the core.
more »
« less
- Award ID(s):
- 1953992
- PAR ID:
- 10446271
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk’s lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon forming debris ring with mostly a proto-Earth’s mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (~0.5% of the mass of the Earth’s mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable.more » « less
-
Abstract MESSENGER observations suggest a magma ocean formed on proto-Mercury, during which evaporation of metals and outgassing of C- and H-bearing volatiles produced an early atmosphere. Atmospheric escape subsequently occurred by plasma heating, photoevaporation, Jeans escape, and photoionization. To quantify atmospheric loss, we combine constraints on the lifetime of surficial melt, melt composition, and atmospheric composition. Consideration of two initial Mercury sizes and four magma ocean compositions determines the atmospheric speciation at a given surface temperature. A coupled interior–atmosphere model determines the cooling rate and therefore the lifetime of surficial melt. Combining the melt lifetime and escape flux calculations provides estimates for the total mass loss from early Mercury. Loss rates by Jeans escape are negligible. Plasma heating and photoionization are limited by homopause diffusion rates of ∼106kg s−1. Loss by photoevaporation depends on the timing of Mercury formation and assumed heating efficiency and ranges from ∼106.6to ∼109.6kg s−1. The material for photoevaporation is sourced from below the homopause and is therefore energy limited rather than diffusion limited. The timescale for efficient interior–atmosphere chemical exchange is less than 10,000 yr. Therefore, escape processes only account for an equivalent loss of less than 2.3 km of crust (0.3% of Mercury’s mass). Accordingly, ≤0.02% of the total mass of H2O and Na is lost. Therefore, cumulative loss cannot significantly modify Mercury’s bulk mantle composition during the magma ocean stage. Mercury’s high core:mantle ratio and volatile-rich surface may instead reflect chemical variations in its building blocks resulting from its solar-proximal accretion environment.more » « less
-
We combine calculations of pebble accretion and accretion by large and giant impacts to quantify the effects of pebbles on the hafnium-tungsten system during Earth formation. Our models include an early pebble accretion phase lasting 4–6 Myr with a global magma ocean and core segregation, a 20–50 Myr phase of large impacts, and a late giant impact representing the Moon-forming event. We consider various mass additions during each accretion phase, vary the metal-silicate partition coefficient for tungsten over a wide range, and track (180)Hf, (182)Hf, (182)W and (184)W in proto-Earth and impactor models over time using standard chondritic values for these isotopes in the pebbles. We find that an early phase of pebble accretion is compatible with the tungsten anomaly of Earth's early mantle as well as the present-day Hf/W ratio, but under restricted conditions. In particular, the pebble mass of proto-Earth is limited to 0.7 Earth masses or less, the average metal-silicate partition coefficient for tungsten is 30–50, and because the metal-silicate equilibration efficiency for giant impacts is low, the equilibration efficiency must be high for the large impactors.more » « less
-
Halogens are important tracers of various planetary formation and evolution processes, and an accurate understanding of their abundances in the Earth’s silicate reservoirs can help us reconstruct the history of interactions among mantle, atmosphere, and oceans. The previous studies of halogen abundances in the bulk silicate Earth (BSE) are based on the assumption of constant ratios of element abundances, which is shown to result in a gross underestimation of the BSE halogen budget. Here we present a more robust approach using a log-log linear model. Using this method, we provide an internally consistent estimate of halogen abundances in the depleted mid-ocean ridge basalts (MORB)-source mantle, the enriched ocean island basalts (OIB)-source mantle, the depleted mantle, and BSE. Unlike previous studies, our results suggest that halogens in BSE are not more depleted compared to elements with similar volatility, thereby indicating sufficient halogen retention during planetary accretion. According to halogen abundances in the depleted mantle and BSE, we estimate that ∼87% of all stable halogens reside in the present-day mantle. Given our understanding of the history of mantle degassing and the evolution of crustal recycling, the revised halogen budget suggests that deep halogen cycle is characterized by efficient degassing in the early Earth and subsequent net regassing in the rest of Earth history. Such an evolution of deep halogen cycle presents a major step toward a more comprehensive understanding of ancient ocean alkalinity, which affects carbon partitioning within the hydrosphere, the stability of crustal and authigenic minerals, and the development of early life.more » « less
An official website of the United States government
