skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1953992

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Volatiles from the solar nebula are known to be present in Earth's deep mantle. The core also may contain solar nebula‐derived volatiles, but in unknown amounts. Here we use calculations of volatile ingassing and degassing to estimate the abundance of primordial3He now in the core and track the rate of3He exchange between the core and mantle through Earth history. We apply an ingassing model that includes a silicate magma ocean and an iron‐rich proto‐core coupled to a nebular atmosphere of solar composition to calculate the amounts of3He acquired by the mantle and core during accretion and core formation. Using experimentally determined partitioning between core‐forming metals and silicate magma, we find that dissolution from the nebular atmosphere deposits one or more petagrams of3He into the proto‐core. Following accretion,3He exchange depends on the convective history of the coupled core‐mantle system. We combine determinations of the present‐day surface3He flux with estimates of the present‐day mantle3He abundance, mantle and core heat fluxes, and our ingassed3He abundances in a convective degassing model. According to this model, the mantle3He abundance is evolving toward a statistical steady state, in which surface losses are compensated by enrichments from the core. 
    more » « less
  2. Free, publicly-accessible full text available February 1, 2026
  3. We combine calculations of pebble accretion and accretion by large and giant impacts to quantify the effects of pebbles on the hafnium-tungsten system during Earth formation. Our models include an early pebble accretion phase lasting 4–6 Myr with a global magma ocean and core segregation, a 20–50 Myr phase of large impacts, and a late giant impact representing the Moon-forming event. We consider various mass additions during each accretion phase, vary the metal-silicate partition coefficient for tungsten over a wide range, and track (180)Hf, (182)Hf, (182)W and (184)W in proto-Earth and impactor models over time using standard chondritic values for these isotopes in the pebbles. We find that an early phase of pebble accretion is compatible with the tungsten anomaly of Earth's early mantle as well as the present-day Hf/W ratio, but under restricted conditions. In particular, the pebble mass of proto-Earth is limited to 0.7 Earth masses or less, the average metal-silicate partition coefficient for tungsten is 30–50, and because the metal-silicate equilibration efficiency for giant impacts is low, the equilibration efficiency must be high for the large impactors. 
    more » « less