skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Mesoscale Interrogation Reveals Mechanistic Origins of Lithium Filaments along Grain Boundaries in Inorganic Solid Electrolytes
Abstract

Solid‐state batteries (SSBs), utilizing a lithium metal anode, promise to deliver enhanced energy and power densities compared to conventional lithium‐ion batteries. Penetration of lithium filaments through the solid‐state electrolytes (SSEs) during electrodeposition poses major constraints on the safety and rate performance of SSBs. While microstructural attributes, especially grain boundaries (GBs) within the SSEs are considered preferential metal propagation pathways, the underlying mechanisms are not fully understood yet. Here, a comprehensive insight is presented into the mechanistic interactions at the mesoscale including the electrochemical‐mechanical response of the GB‐electrode junction and competing ion transport dynamics in the SSE. Depending on the GB transport characteristics, a highly non‐uniform electrodeposition morphology consisting of either cavities or protrusions at the GB‐electrode interface is identified. Mechanical stability analysis reveals localized strain ramps in the GB regions that can lead to brittle fracture of the SSE. For ionically less conductive GBs compared to the grains, a crack formation and void filling mechanism, triggered by the heterogeneous nature of electrochemical‐mechanical interactions is delineated at the GB‐electrode junction. Concurrently, in situ X‐ray tomography of pristine and failed Li7La3Zr2O12(LLZO) SSE samples confirm the presence of filamentous lithium penetration and validity of the proposed mesoscale failure mechanisms.

 
more » « less
Award ID(s):
1727863 2041499
NSF-PAR ID:
10446294
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
12
Issue:
3
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    “Anode‐free” solid‐state batteries (SSBs), which have no anode active material, can exhibit extremely high energy density (≈1500 Wh L−1). However, there is a lack of understanding of the lithium plating/stripping mechanisms at initially lithium‐free solid‐state electrolyte (SSE) interfaces because excess lithium metal is often used. Here, it is demonstrated that commercially relevant quantities of lithium (>5 mAh cm−2) can be reliably plated at moderate current densities (1 mA cm−2) using the sulfide SSE Li6PS5Cl. Investigations of lithium plating/stripping mechanisms, in conjunction with cryo‐focused ion beam (FIB) imaging, synchrotron tomography, and phase‐field modeling, reveal that the cycling stability of these cells is fundamentally limited by the nonuniform presence of lithium during stripping. Local lithium depletion causes isolated lithium regions toward the end of stripping, decreasing electrochemically active area and resulting in high local current densities and void formation. This accelerates subsequent filament growth and short circuiting compared to lithium‐excess cells. Despite this degradation mode, it is shown that anode‐free cells exhibit comparable Coulombic efficiency to lithium‐excess cells, and improved resistance to short circuiting is achieved by avoiding local lithium depletion through retention of thicker lithium at the interface. These new insights provide a foundation for engineering future high‐energy anode‐free SSBs.

     
    more » « less
  2. Abstract

    As solid‐state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next‐generation energy storage systems, a fundamental understanding of coupled electro‐chemo‐mechanical interactions is essential to design stable solid‐solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics‐coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics‐driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics‐coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro‐chemo‐mechanical coupling toward achieving stable solid/solid interfaces in SSBs.

     
    more » « less
  3. Solid-state batteries (SSBs) hold the potential to enhance the energy density, power density, and safety of conventional lithium-ion batteries. The theoretical promise of SSBs is predicated on the mechanistic design and comprehensive analysis of various solid–solid interfaces and microstructural features within the system. The spatial arrangement and composition of constituent phases (e.g., active material, solid electrolyte, binder) in the solid-state cathode dictate critical characteristics such as solid–solid point contacts or singularities within the microstructure and percolation pathways for ionic/electronic transport. In this work, we present a comprehensive mesoscale discourse to interrogate the underlying microstructure-coupled kinetic-transport interplay and concomitant modes of resistances that evolve during electrochemical operation of SSBs. Based on a hierarchical physics-based analysis, the mechanistic implications of solid–solid point contact distribution and intrinsic transport pathways on the kinetic heterogeneity is established. Toward designing high-energy-density SSB systems, the fundamental correlation between active material loading, electrode thickness and electrochemical response has been delineated. We examine the paradigm of carbon-binder free cathodes and identify design criteria that can facilitate enhanced performance with such electrode configurations. A mechanistic design map highlighting the dichotomy in kinetic and ionic/electronic transport limitations that manifest at various SSB cathode microstructural regimes is established. 
    more » « less
  4. Abstract

    The key component in lithium solid‐state batteries (SSBs) is the solid electrolyte composed of lithium superionic conductors (SICs). Lithium oxide SICs offer improved electrochemical and chemical stability compared with sulfides, and their recent advancements have largely been achieved using materials in the garnet‐ and NASICON (sodium superionic conductor)‐ structured families. In this work, using the ion‐conduction mechanisms in garnet and NASICON as inspiration, a common pattern of an “activated diffusion network” and three structural features that are beneficial for superionic conduction: a 3D percolation Li diffusion network, short distances between occupied Li sites, and the “homogeneity” of the transport path are identified. A high‐throughput computational screening is performed to search for new lithium oxide SICs that share these features. From this search, seven candidates are proposed exhibiting high room‐temperature ionic conductivity evaluated using ab initio molecular dynamics simulations. Their structural frameworks including spinel, oxy‐argyrodite, sodalite, and LiM(SeO3)2present new opportunities for enriching the structural families of lithium oxide SICs.

     
    more » « less
  5. Abstract The development of next-generation batteries, utilizing electrodes with high capacities and power densities requires a comprehensive understanding and precise control of material interfaces and architectures. Electro-chemo-mechanics plays an integral role in the morphological evolution and stability of such complex interfaces. Volume changes in electrode materials and the chemical interactions of electrode/electrolyte interfaces result in nonuniform stress fields and structurally different interphases, fundamentally affecting the underlying transport and reaction kinetics. The origin of this mechanistic coupling and its implications on degradation is uniquely dependent on the interface characteristics. In this review, the distinct nature of chemo–mechanical coupling and failure mechanisms at solid–liquid interfaces and solid–solid interfaces is analyzed. For lithium metal electrodes, the critical role of surface/microstructural heterogeneities on the solid electrolyte interphase (SEI) stability and dendrite growth in liquid electrolytes, and on the onset of contact loss and filament penetration with solid electrolytes is summarized. With respect to composite electrodes, key differences in the microstructure-coupled electro-chemo-mechanical attributes of intercalation- and conversion-based chemistries are delineated. Moving from liquid to solid electrolytes in such cathodes, we highlight the significant impact of solid–solid point contacts on transport/mechanical response, electrochemical performance, and failure modes such as particle cracking and delamination. Finally, we present our perspective on future research directions and opportunities to address the underlying electro-chemo-mechanical challenges for enabling next-generation lithium metal batteries. 
    more » « less