Suppressing Li dendrite growth has gained research interest due to the high theoretical capacity of Li metal anodes. Traditional Celgard membranes which are currently used in Li metal batteries fall short in achieving uniform Li flux at the electrode/electrolyte interface due to their inherent irregular pore sizes. Here, the use of an ultrathin (≈1.2 nm) carbon nanomembrane (CNM) which contains sub‐nanometer sized pores as an interlayer to regulate the mass transport of Li‐ions is demonstrated. Symmetrical cell analysis reveals that the cell with CNM interlayer cycles over 2x longer than the control experiment without the formation of Li dendrites. Further investigation on the Li plating morphology on Cu foil reveals highly dense deposits of Li metal using a standard carbonate electrolyte. A smoothed‐particle hydrodynamics simulation of the mass transport at the anode–electrolyte interface elucidates the effect of the CNM in promoting the formation of highly dense Li deposits and inhibiting the formation of dendrites. A lithium metal battery fabricated using the LiFePO4cathode exhibits a stable, flat voltage profile with low polarization for over 300 cycles indicating the effect of regulated mass transport.
Solid‐state lithium metal batteries with garnet‐type electrolyte provide several advantages over conventional lithium‐ion batteries, especially for safety and energy density. However, a few grand challenges such as the propagation of Li dendrites, poor interfacial contact between the solid electrolyte and the electrodes, and formation of lithium carbonate during ambient exposure over the solid‐state electrolyte prevent the viability of such batteries. Herein, an ultrathin sub‐nanometer porous carbon nanomembrane (CNM) is employed on the surface of solid‐state electrolyte (SSE) that increases the adhesion of SSE with electrodes, prevents lithium carbonate formation over the surface, regulates the flow of Li‐ions, and blocks any electronic leakage. The sub‐nanometer scale pores in CNM allow rapid permeation of Li‐ions across the electrode–electrolyte interface without the presence of any liquid medium. Additionally, CNM suppresses the propagation of Li dendrites by over sevenfold up to a current density of 0.7 mA cm−2and enables the cycling of all‐solid‐state batteries at low stack pressure of 2 MPa using LiFePO4cathode and Li metal anode. The CNM provides chemical stability to the solid electrolyte for over 4 weeks of ambient exposure with less than a 4% increase in surface impurities.
more » « less- Award ID(s):
- 1751472
- NSF-PAR ID:
- 10426721
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 19
- Issue:
- 44
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of >99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO4cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2for 110 times at a negligible capacity decay of 0.01% per cycle.
-
Abstract Both powerful and unstable, practical lithium metal batteries have remained a difficult challenge for over 50 years. With severe ion depletion gradients in the electrolyte during charging, they rapidly develop porosity, dendrites, and dead Li that cause poor performance and, all too often, spectacular failure. Remarkably, incorporating a small, 100 MHz surface acoustic wave device (SAW) solves this problem. Providing acoustic streaming electrolyte flow during charging, the device enables dense Li plating and avoids porosity and dendrites. SAW‐integrated Li cells can operate up to 6 mA cm−2in a commercial carbonate‐based electrolyte; omitting the SAW leads to short circuiting at 2 mA cm−2. The Li deposition is morphologically dendrite‐free and close to theoretical density when cycling with the SAW. With a 245 µm thick Li anode in a full Li||LFP (LiFePO4) cell, introducing the SAW increases the uncycled Li from 145 to 225 µm, decreasing Li consumption from 41% to only 8%. A closed‐form model is provided to explain the phenomena and serve as a design tool for integrating this chemistry‐agnostic approach into batteries whatever the chemistry within.
-
Abstract A thin solid electrolyte with a high Li+conductivity is used to separate the metallic lithium anode and the cathode in an all‐solid‐state Li‐metal battery. However, most solid Li‐ion electrolytes have a small electrochemical stability window, large interfacial resistance, and cannot block lithium‐dendrite growth when lithium is plated on charging of the cell. Mg2+stabilizes a rhombohedral NASICON‐structured solid electrolyte of the formula Li1.2Mg0.1Zr1.9(PO4)3(LMZP). This solid electrolyte has Li‐ion conductivity two orders of magnitude higher at 25 °C than that of the triclinic LiZr2(PO4)3.7Li and6Li NMR confirm the Li‐ions in two different crystallographic sites of the NASICON framework with 85% of the Li‐ions having a relatively higher mobility than the other 15%. The anode–electrolyte interface is further investigated with symmetric Li/LMZP/Li cell testing, while the cathode–electrolyte interface is explored with an all‐solid‐state Li/LMZP/LiFePO4cell. The enhanced performance of these cells enabled by the Li1.2Mg0.1Zr1.9(PO4)3solid electrolyte is stable upon repeated charge/discharge cycling.
-
Abstract All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.