Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift
The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that forms more »
- Award ID(s):
- 1724467
- Publication Date:
- NSF-PAR ID:
- 10389057
- Journal Name:
- Elementa: Science of the Anthropocene
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2325-1026
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract
This dataset contains the corresponding photos of the albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. The corresponding measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and broadband albedo dataset (doi.org/10.18739/A2KK94D36). -
Abstract
This dataset contains broadband albedo measurements made on the sea ice surface from approximately 1-meter (m) elevation during April – September 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the Central Arctic Ocean. Measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. Broadband albedo data was collected using a Kipp and Zonen albedometer. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and albedo photo dataset (doi.org/10.18739/A2B27PS3N). -
Accurate multidecadal radiative flux records are vital to understand Arctic amplification and constrain climate model uncertainties. Uncertainty in the NASA Clouds and the Earth’s Radiant Energy System (CERES)-derived irradiances is larger over sea ice than any other surface type and comes from several sources. The year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic provides a rare opportunity to explore uncertainty in CERES-derived radiative fluxes. First, a systematic and statistically robust assessment of surface shortwave and longwave fluxes was conducted using in situ measurements from MOSAiC flux stations. The CERES Synoptic 1degree (SYN1deg) product overestimates the downwelling shortwave flux by +11.40 Wm–2 and underestimates the upwelling shortwave flux by –15.70 Wm–2 and downwelling longwave fluxes by –12.58 Wm–2 at the surface during summer. In addition, large differences are found in the upwelling longwave flux when the surface approaches the melting point (approximately 0°C). The biases in downwelling shortwave and longwave fluxes suggest that the atmosphere represented in CERES is too optically thin. The large negative bias in upwelling shortwave flux can be attributed in large part to lower surface albedo (–0.15) in satellite footprint relative to surface sensors. Additionally, the results show thatmore »
-
Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51%more »