skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Foldable Detergents for Membrane Protein Study: Importance of Detergent Core Flexibility in Protein Stabilization
Abstract Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein‐coupled receptors and protein complexes. In the current study, we prepared tandem triazine‐based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM−Hs) and 1,2‐ethylenediamine (TZM−Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM−Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM−Hs containing a short linker. This result indicates that introduction of the flexible1,2‐ethylenediamine linker between two rigid triazine rings enables the TZM−Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.  more » « less
Award ID(s):
1810695
PAR ID:
10446445
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
21
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Artificial native-like lipid bilayer systems constructed from phospholipids assembling into unilamellar liposomes allow the reconstitution of detergent-solubilized transmembrane proteins into supramolecular lipid-protein assemblies called proteoliposomes, which mimic cellular membranes. Stabilization of these complexes remains challenging because of their chemical composition, the hydrophobicity and structural instability of membrane proteins, and the lability of interactions between protein, detergent, and lipids within micelles and lipid bilayers. In this work we demonstrate that metastable lipid, protein-detergent, and protein-lipid supramolecular complexes can be successfully generated and immobilized within zeolitic-imidazole framework (ZIF) to enhance their stability against chemical and physical stressors. Upon immobilization in ZIF bio-composites, blank liposomes, and model transmembrane metal transporters in detergent micelles or embedded in proteoliposomes resist elevated temperatures, exposure to chemical denaturants, aging, and mechanical stresses. Extensive morphological and functional characterization of the assemblies upon exfoliation reveal that all these complexes encapsulated within the framework maintain their native morphology, structure, and activity, which is otherwise lost rapidly without immobilization. 
    more » « less
  2. Gasset, Maria (Ed.)
    Francisella tularensisis an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable.F.tularensisouter membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) ofF.tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a β-barrel domain consistent with alphafold2’s prediction of an eight stranded β-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal β-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal β-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it. 
    more » « less
  3. Solid-state Nuclear Magnetic Resonance (NMR) in combination with magnetically aligned discoidal lipid mimics allows for studying the conformations of membrane proteins in planar, lipid-rich bilayer environments and at the physiological temperature. We have recently demonstrated the general applicability of macrodiscs composed of DMPC lipids and peptoid belts, which yield magnetic alignment and NMR spectroscopic resolution comparable or superior to detergent-containing bicelles. Here we report on a considerable improvement in the magnetic alignment and NMR resolution of peptoid-based macrodiscs consisting of a mixture of the zwitterionic and negatively charged lipids (DMPC/DMPG at the 85% to 15% molar ratio). The resulting linewidths are about 30% sharper due to the higher orientational order parameter likely arising from the stabilizing electrostatic repulsion between the discs. Moreover, highly aligned, detergent-free macrodiscs can be formed with a longer-chain lipid, DPPC. Interestingly, the spectra of Pf1 in the two lipid mimetics are almost indistinguishable, which would mean that the overall transmembrane helix tilt might be governed not only by the hydrophobic matching but also possibly by the interactions of the flanking lysine and arginine residues at the membrane interface. 
    more » « less
  4. Soares, Claudio M. (Ed.)
    Membrane proteins are significantly underrepresented in Protein Data Bank despite their essential role in cellular mechanisms and the major progress in experimental protein structure determination. Thus, computational approaches are especially valuable in the case of membrane proteins and their assemblies. The main focus in developing structure prediction techniques has been on soluble proteins, in part due to much greater availability of the structural data. Currently, structure prediction of protein complexes (protein docking) is a well-developed field of study. However, the generic protein docking approaches are not optimal for the membrane proteins because of the differences in physicochemical environment and the spatial constraints imposed by the membranes. Thus, docking of the membrane proteins requires specialized computational methods. Development and benchmarking of the membrane protein docking approaches has to be based on high-quality sets of membrane protein complexes. In this study we present a new dataset of 456 non-redundant alpha helical binary interfaces. The set is significantly larger and more representative than the previously developed sets. In the future, it will become the basis for the development of docking and scoring benchmarks, similar to the ones for soluble proteins in the Dockground resource http://dockground.compbio.ku.edu . 
    more » « less
  5. Newman, Dianne K. (Ed.)
    ABSTRACT Sideroxydans species are important chemolithoautotrophic Fe(II)-oxidizing bacteria in freshwater environments and play a role in biogeochemical cycling of multiple elements. Due to difficulties in laboratory cultivation and genetic intractability, the electron transport proteins required for the growth and survival of this organism remain understudied. In Sideroxydans lithotrophicus ES-1, it is proposed that the Mto pathway transfers electrons from extracellular Fe(II) oxidation across the periplasm to an inner membrane NapC/NirT family protein encoded by Slit_2495 to reduce the quinone pool. Based on sequence similarity, Slit_2495 has been putatively called CymA, a NapC/NirT family protein which in Shewanella oneidensis MR-1 oxidizes the quinol pool during anaerobic respiration of a wide range of substrates. However, our phylogenetic analysis using the alignment of different NapC/NirT family proteins shows that Slit_2495 clusters closer to NirT sequences than to CymA. We propose the name ImoA (inner membrane oxidoreductase) for Slit_2495. Our data demonstrate that ImoA can oxidize quinol pools in the inner membrane and is able to functionally replace CymA in S. oneidensis. The ability of ImoA to oxidize quinol in vivo as opposed to its proposed function of reducing quinone raises questions about the directionality and/or reversibility of electron flow through the Mto pathway in S. lithotrophicus. IMPORTANCE Fe(II)-oxidizing bacteria play an important role in biogeochemical cycles. At circumneutral pH, these organisms perform extracellular electron transfer, taking up electrons from Fe(II) outside the cell, potentially through a porin-cytochrome complex in the outer membrane encoded by the Mto pathway. Electrons from Fe(II) oxidation would then be transported to the quinone pool in the inner membrane via periplasmic and inner membrane electron transfer proteins. Directly demonstrating the functionality of genes in neutrophilic iron oxidizers is challenging due to the absence of robust genetic methods. Here, we heterologously expressed a NapC/NirT family tetraheme cytochrome ImoA, encoded by Slit_2495, an inner membrane protein from the Gram-negative Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1, proposed to be involved in extracellular electron transfer to reduce the quinone pool. ImoA functionally replaced the inner membrane c-type cytochrome CymA in the Fe(III)-reducing bacterium Shewanella oneidensis. We suggest that ImoA may function primarily to oxidize quinol inS. lithotrophicus. 
    more » « less