skip to main content


Title: MArVD2: a machine learning enhanced tool to discriminate between archaeal and bacterial viruses in viral datasets
Abstract

Our knowledge of viral sequence space has exploded with advancing sequencing technologies and large-scale sampling and analytical efforts. Though archaea are important and abundant prokaryotes in many systems, our knowledge of archaeal viruses outside of extreme environments is limited. This largely stems from the lack of a robust, high-throughput, and systematic way to distinguish between bacterial and archaeal viruses in datasets of curated viruses. Here we upgrade our prior text-based tool (MArVD) via training and testing a random forest machine learning algorithm against a newly curated dataset of archaeal viruses. After optimization, MArVD2 presented a significant improvement over its predecessor in terms of scalability, usability, and flexibility, and will allow user-defined custom training datasets as archaeal virus discovery progresses. Benchmarking showed that a model trained with viral sequences from the hypersaline, marine, and hot spring environments correctly classified 85% of the archaeal viruses with a false detection rate below 2% using a random forest prediction threshold of 80% in a separate benchmarking dataset from the same habitats.

 
more » « less
Award ID(s):
2149505
NSF-PAR ID:
10446500
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ISME Communications
Volume:
3
Issue:
1
ISSN:
2730-6151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Viruses of the phylumNucleocytoviricota, often referred to as “giant viruses,” are prevalent in various environments around the globe and play significant roles in shaping eukaryotic diversity and activities in global ecosystems. Given the extensive phylogenetic diversity within this viral group and the highly complex composition of their genomes, taxonomic classification of giant viruses, particularly incomplete metagenome-assembled genomes (MAGs) can present a considerable challenge. Here we developed TIGTOG (TaxonomicInformation ofGiant viruses usingTrademarkOrthologousGroups), a machine learning-based approach to predict the taxonomic classification of novel giant virus MAGs based on profiles of protein family content. We applied a random forest algorithm to a training set of 1531 quality-checked, phylogenetically diverseNucleocytoviricotagenomes using pre-selected sets of giant virus orthologous groups (GVOGs). The classification models were predictive of viral taxonomic assignments with a cross-validation accuracy of 99.6% at the order level and 97.3% at the family level. We found that no individual GVOGs or genome features significantly influenced the algorithm’s performance or the models’ predictions, indicating that classification predictions were based on a comprehensive genomic signature, which reduced the necessity of a fixed set of marker genes for taxonomic assigning purposes. Our classification models were validated with an independent test set of 823 giant virus genomes with varied genomic completeness and taxonomy and demonstrated an accuracy of 98.6% and 95.9% at the order and family level, respectively. Our results indicate that protein family profiles can be used to accurately classify large DNA viruses at different taxonomic levels and provide a fast and accurate method for the classification of giant viruses. This approach could easily be adapted to other viral groups.

     
    more » « less
  2. Abstract Background

    With the advent of metagenomics, the importance of microorganisms and how their interactions are relevant to ecosystem resilience, sustainability, and human health has become evident. Cataloging and preserving biodiversity is paramount not only for the Earth’s natural systems but also for discovering solutions to challenges that we face as a growing civilization. Metagenomics pertains to the in silico study of all microorganisms within an ecological community in situ,however, many software suites recover only prokaryotes and have limited to no support for viruses and eukaryotes.

    Results

    In this study, we introduce theViral Eukaryotic Bacterial Archaeal(VEBA) open-source software suite developed to recover genomes from all domains. To our knowledge,VEBAis the first end-to-end metagenomics suite that can directly recover, quality assess, and classify prokaryotic, eukaryotic, and viral genomes from metagenomes.VEBAimplements a novel iterative binning procedure and hybrid sample-specific/multi-sample framework that yields more genomes than any existing methodology alone.VEBAincludes a consensus microeukaryotic database containing proteins from existing databases to optimize microeukaryotic gene modeling and taxonomic classification.VEBAalso provides a unique clustering-based dereplication strategy allowing for sample-specific genomes and genes to be directly compared across non-overlapping biological samples. Finally,VEBAis the only pipeline that automates the detection of candidate phyla radiation bacteria and implements the appropriate genome quality assessments.VEBA’s capabilities are demonstrated by reanalyzing 3 existing public datasets which recovered a total of 948 MAGs (458 prokaryotic, 8 eukaryotic, and 482 viral) including several uncharacterized organisms and organisms with no public genome representatives.

    Conclusions

    TheVEBAsoftware suite allows for the in silico recovery of microorganisms from all domains of life by integrating cutting edge algorithms in novel ways.VEBAfully integrates both end-to-end and task-specific metagenomic analysis in a modular architecture that minimizes dependencies and maximizes productivity. The contributions ofVEBAto the metagenomics community includes seamless end-to-end metagenomics analysis but also provides users with the flexibility to perform specific analytical tasks.VEBAallows for the automation of several metagenomics steps and shows that new information can be recovered from existing datasets.

     
    more » « less
  3. ABSTRACT We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a Thermoproteales host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions. A comparison of virus particle morphologies and gene content demonstrates that TSPV1 is a new member of the Globuloviridae family of archaeal viruses. However, unlike other Globuloviridae members, TSPV1 has numerous highly unusual filaments decorating its surface, which can extend hundreds of micrometers from the virion. To our knowledge, similar filaments have not been observed in any other archaeal virus. The filaments are remarkably stable, remaining intact across a broad range of temperature and pH values, and they are resistant to chemical denaturation and proteolysis. A major component of the filaments is a glycosylated 35-kDa TSPV1 protein (TSPV1 GP24). The filament protein lacks detectable homology to structurally or functionally characterized proteins. We propose, given the low host cell densities of hot spring environments, that the TSPV1 filaments serve to increase the probability of virus attachment and entry into host cells. IMPORTANCE High-temperature environments have proven to be an important source for the discovery of new archaeal viruses with unusual particle morphologies and gene content. Our isolation of Thermoproteus spherical piliferous virus 1 (TSPV1), with numerous filaments extending from the virion surface, expands our understanding of viral diversity and provides new insight into viral replication in high-temperature environments. 
    more » « less
  4. null (Ed.)
    Background Viruses influence global patterns of microbial diversity and nutrient cycles. Though viral metagenomics (viromics), specifically targeting dsDNA viruses, has been critical for revealing viral roles across diverse ecosystems, its analyses differ in many ways from those used for microbes. To date, viromics benchmarking has covered read pre-processing, assembly, relative abundance, read mapping thresholds and diversity estimation, but other steps would benefit from benchmarking and standardization. Here we use in silico-generated datasets and an extensive literature survey to evaluate and highlight how dataset composition (i.e., viromes vs bulk metagenomes) and assembly fragmentation impact (i) viral contig identification tool, (ii) virus taxonomic classification, and (iii) identification and curation of auxiliary metabolic genes (AMGs). Results The in silico benchmarking of five commonly used virus identification tools show that gene-content-based tools consistently performed well for long (≥3 kbp) contigs, while k -mer- and blast-based tools were uniquely able to detect viruses from short (≤3 kbp) contigs. Notably, however, the performance increase of k -mer- and blast-based tools for short contigs was obtained at the cost of increased false positives (sometimes up to ∼5% for virome and ∼75% bulk samples), particularly when eukaryotic or mobile genetic element sequences were included in the test datasets. For viral classification, variously sized genome fragments were assessed using gene-sharing network analytics to quantify drop-offs in taxonomic assignments, which revealed correct assignations ranging from ∼95% (whole genomes) down to ∼80% (3 kbp sized genome fragments). A similar trend was also observed for other viral classification tools such as VPF-class, ViPTree and VIRIDIC, suggesting that caution is warranted when classifying short genome fragments and not full genomes. Finally, we highlight how fragmented assemblies can lead to erroneous identification of AMGs and outline a best-practices workflow to curate candidate AMGs in viral genomes assembled from metagenomes. Conclusion Together, these benchmarking experiments and annotation guidelines should aid researchers seeking to best detect, classify, and characterize the myriad viruses ‘hidden’ in diverse sequence datasets. 
    more » « less
  5. Abstract

    The introduction of high-throughput chromosome conformation capture (Hi-C) into metagenomics enables reconstructing high-quality metagenome-assembled genomes (MAGs) from microbial communities. Despite recent advances in recovering eukaryotic, bacterial, and archaeal genomes using Hi-C contact maps, few of Hi-C-based methods are designed to retrieve viral genomes. Here we introduce ViralCC, a publicly available tool to recover complete viral genomes and detect virus-host pairs using Hi-C data. Compared to other Hi-C-based methods, ViralCC leverages the virus-host proximity structure as a complementary information source for the Hi-C interactions. Using mock and real metagenomic Hi-C datasets from several different microbial ecosystems, including the human gut, cow fecal, and wastewater, we demonstrate that ViralCC outperforms existing Hi-C-based binning methods as well as state-of-the-art tools specifically dedicated to metagenomic viral binning. ViralCC can also reveal the taxonomic structure of viruses and virus-host pairs in microbial communities. When applied to a real wastewater metagenomic Hi-C dataset, ViralCC constructs a phage-host network, which is further validated using CRISPR spacer analyses. ViralCC is an open-source pipeline available athttps://github.com/dyxstat/ViralCC.

     
    more » « less