While there has been extensive investigation into modulating quasi‐2D perovskite compositions in light‐emitting diodes (LEDs) for promoting their electroluminescence, very few reports have studied approaches involving enhancement of the energy transfer between quasi‐2D perovskite layers of the film, which plays very important role for achieving high‐performance perovskite LEDs (PeLEDs). In this work, a bifunctional ligand of 4‐(2‐aminoethyl)benzoic acid (ABA) cation is strategically introduced into the perovskite to diminish the weak van der Waals gap between individual perovskite layers for promoting coupled quasi‐2D perovskite layers. In particular, the strengthened interaction between coupled quasi‐2D perovskite layers favors an efficient energy transfer in the perovskite films. The introduced ABA can also simultaneously passivate the perovskite defects by reducing metallic Pb for less nonradiative recombination loss. Benefiting from the advanced properties of ABA incorporated perovskites, highly efficient blue PeLEDs with external quantum efficiency of 10.11% and a very long operational stability of 81.3 min, among the best performing blue quasi‐2D PeLEDs, are achieved. Consequently, this work contributes an effective approach for high‐performance and stable blue PeLEDs toward practical applications.
Perovskite light‐emitting diodes (PeLEDs) have received great attention for their potential as next‐generation display technology. While remarkable progress has been achieved in green, red, and near‐infrared PeLEDs with external quantum efficiencies (EQEs) exceeding 20%, obtaining high performance blue PeLEDs remains a challenge. Poor charge balance due to large charge injection barriers in blue PeLEDs has been identified as one of the major roadblocks to achieve high efficiency. Here band edge control of perovskite emitting layers for blue PeLEDs with enhanced charge balance and device performance is reported. By using organic spacer cations with different dipole moments, that is, phenethyl ammonium (PEA), methoxy phenethyl ammonium (MePEA), and 4‐fluoro phenethyl ammonium (4FPEA), the band edges of quasi‐2D perovskites are tuned without affecting their band gaps. Detailed characterization and computational studies have confirmed the effect of dipole moment modification to be mostly electrostatic, resulting in changes in the ionization energies of ≈0.45 eV for MePEA and ≈ −0.65 eV for 4FPEA based thin films relative to PEA‐based thin films. With improved charge balance, blue PeLEDs based on MePEA quasi‐2D perovskites show twofold increase of the EQE as compared to the control PEA based devices.
more » « less- Award ID(s):
- 1912911
- PAR ID:
- 10446527
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 31
- Issue:
- 45
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices.
-
Abstract The recent development of quasi‐2D perovskite solar cells have drawn significant attention due to the improved stability of these materials and devices against moisture compared to their 3D counterparts. However, the optoelectronic properties of 2D perovskites need to be optimized in order to achieve high efficiency. In this work, the effect of spacer cations, i.e., phenethylammonium (PEA), 4‐fluorophenethylammonium (F‐PEA), and 4‐methoxyphenethylammonium (MeO‐PEA) on the optoelectronic properties and device performance of quasi‐2D perovskites is systematically studied. It is observed that both larger and more hydrophobic cations can improve perovskite stability against moisture, while larger size can adversely influence the device performance. Interestingly, with F‐PEA or MeO‐PEA, distribution of
n value can be shifted toward high 3D content in quasi‐2D perovskite layers, which enables lower bandgaps and possibly lower exciton binding energy. Due to the best charge transport and lowest bandgap, the F‐PEAI‐based quasi‐2D perovskite (n = 5) solar cell shows a highest power conversion efficiency (PCE) of 14.5% with excellent stability in air with a humidity of 40–50%, keeping 90% of the original PCE after 40 d. It is believed that the approach may open a way for the design of new organic spacer cations for stable low‐dimensional hybrid perovskites with high performance. -
Quasi‐2D perovskites are attractive because of their improved stability compared with 3D perovskites counterparts; however, they suffer from poor performance due to the insulating organic cation spacers. To resolve this issue, a strategy of replacing the insulating spacer with conducting spacer is proposed which successfully converts the spacer from a charge‐transporting “barrier” to charge‐transporting “bridge.” Specifically, an alkyl linker‐free, fully conjugated aromatic 2,2′‐biimidazolium (BIDZ) cation is introduced as a spacer to compose quasi‐2D perovskites. Density functional theory (DFT) simulation results show that the lowest unoccupied molecular orbital (LUMO) level localizes on BIDZ and the highest occupied molecular orbital (HOMO) level is on the perovskite. However, both HOMO and LUMO levels localize on perovskite slabs for the well‐known phenethylammonium (PEA)‐based 2D perovskites. The strong electronic coupling between BIDZ and 3D perovskite slabs improves carrier mobilities even for a low‐weak‐crystallinity and random‐orientated quasi‐2D perovskite film. As a result, a remarkable power conversion efficiency up to 11.4% (
n = 5) is achieved, which is much higher than that of PEA‐based random‐orientated quasi‐2D perovskites with the same processing condition (6.5%). The strategy paves the way to highly efficient and stable quasi‐2D perovskites solar cells through designing new organic spacer cations. -
Abstract Layered halide perovskites have garnered significant interest due to their exceptional optoelectronic properties and great promises in light‐emitting applications. Achieving high‐performance perovskite light‐emitting diodes (PeLEDs) requires a deep understanding of exciton dynamics in these materials. This review begins with a fundamental overview of the structural and photophysical properties of layered halide perovskites, then delves into the importance of dimensionality control and cascade energy transfer in quasi‐2D PeLEDs. In the second half of the review, more complex exciton dynamics, such as multiexciton processes and triplet exciton dynamics, from the perspective of LEDs are explored. Through this comprehensive review, an in‐depth understanding of the critical aspects of exciton dynamics in layered halide perovskites and their impacts on future research and technological advancements for layered halide PeLEDs is provided.