skip to main content


Title: SEC1A is a major Arabidopsis Sec1/Munc18 gene in vesicle trafficking during pollen tube tip growth
SUMMARY

Pollen tubes (PTs) grow by the targeted secretion of new cell wall material to their expanding tip region. Sec1/Munc18 (SM) proteins promote membrane fusion through regulation of the SNARE complex. We have previously shown that disruption of protein glycosylation in theArabidopsis thaliana hpat1 hpat3double mutant leads to PT growth defects that can be suppressed by reducing secretion. Here, we identified five point mutant alleles of the SM proteinSEC1Aashpat1/3suppressors. The suppressors increased seed set, reduced PT growth defects and reduced the rate of glycoprotein secretion. In the absence of thehpatmutations,sec1areduced pollen germination and PT elongation producing shorter and wider PTs. Consistent with a defect in membrane fusion,sec1aPTs accumulated secretory vesicles. Thoughsec1ahad significantly reduced male transmission, homozygoussec1aplants maintained full seed set, demonstrating thatSEC1Awas ultimately dispensable for pollen fertility. However, when combined with a mutation in anotherSEC1‐likeSMgene,keule, pollen fertility was totally abolished. Mutation insec1b, the final member of the Arabidopsis SEC1 clade, did not enhance thesec1aphenotype. Thus, SEC1A is the major SM protein promoting pollen germination and tube elongation, but in its absence KEULE can partially supply this activity. When we examined the expression of the SM protein family in other species for which pollen expression data were available, we found that at least one Sec1‐like protein was highly expressed in pollen samples, suggesting a conserved role in pollen fertility in other species.

 
more » « less
NSF-PAR ID:
10446537
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
110
Issue:
5
ISSN:
0960-7412
Page Range / eLocation ID:
p. 1353-1369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    HYDROXYPROLINEO‐ARABINOSYLTRANSFERASEs (HPATs) initiate a post‐translational protein modification (Hyp‐Ara) found abundantly on cell wall structural proteins. InArabidopsis thaliana,HPAT1andHPAT3are redundantly required for full pollen fertility. In addition to the lack of Hyp‐Ara inhpat1/3pollen tubes (PTs), we also found broadly disrupted cell wall polymer distributions, particularly the conversion of the tip cell wall to a more shaft‐like state. Mutant PTs were slow growing and prone to rupture and morphological irregularities. In a forward mutagenesis screen for suppressors of thehpat1/3low seed‐set phenotype, we identified a missense mutation inexo70a2, a predicted member of the vesicle‐tethering exocyst complex. The suppressed pollen had increased fertility, fewer morphological defects and partially rescued cell wall organization. A transcriptional null allele ofexo70a2also suppressed thehpat1/3fertility phenotype, as did mutants of core exocyst complex membersec15a, indicating that reduced exocyst function bypassed the PT requirement for Hyp‐Ara. In a wild‐type background,exo70a2reduced male transmission efficiency, lowered pollen germination frequency and slowed PT elongation. EXO70A2 also localized to the PT tip plasma membrane, consistent with a role in exocyst‐mediated secretion. To monitor the trafficking of Hyp‐Ara modified proteins, we generated an HPAT‐targeted fluorescent secretion reporter. Reporter secretion was partially dependent onEXO70A2and was significantly increased inhpat1/3PTs compared with the wild type, but was reduced in the suppressedexo70a2 hpat1/3tubes.

     
    more » « less
  2. Introduction

    VPS45 belongs to the Sec1/Munc18 family of proteins, which interact with and regulate Qa-SNARE function during membrane fusion. We have shown previously thatArabidopsis thalianaVPS45 interacts with the SYP61/SYP41/VTI12 SNARE complex, which locates on thetrans-Golgi network (TGN). It is required for SYP41 stability, and it functions in cargo trafficking to the vacuole and in cell expansion. It is also required for correct auxin distribution during gravitropism and lateral root growth.

    Results

    Asvps45knockout mutation is lethal in Arabidopsis, we identified a mutant,vps45-3, with a point mutation in theVPS45gene causing a serine 284-to-phenylalanine substitution. The VPS45-3 protein is stable and maintains interaction with SYP61 and SYP41. However,vps45-3plants display severe growth defects with significantly reduced organ and cell size, similar tovps45RNAi transgenic lines that have reduced VPS45 protein levels. Root hair and pollen tube elongation, both processes of tip growth, are highly compromised invps45-3. Mutant root hairs are shorter and thicker than those of wild-type plants, and are wavy. These root hairs have vacuolar defects, containing many small vacuoles, compared with WT root hairs with a single large vacuole occupying much of the cell volume. Pollen tubes were also significantly shorter invps45-3compared to WT.

    Discussion

    We thus show that VPS45 is essential for proper tip growth and propose that the observed vacuolar defects lead to loss of the turgor pressure needed for tip growth.

     
    more » « less
  3. Abstract

    The sorting of eukaryotic proteins to various organellar destinations requires receptors that recognize cargo protein targeting signals and facilitate transport into the organelle. One such receptor is the peroxinPEX5, which recruits cytosolic cargo carrying a peroxisome‐targeting signal (PTS) type 1 (PTS1) for delivery into the peroxisomal lumen (matrix). In plants and mammals,PEX5 is also indirectly required for peroxisomal import of proteins carrying aPTS2 signal becausePEX5 binds thePTS2 receptor, bringing the associatedPTS2 cargo to the peroxisome along withPTS1 cargo. DespitePEX5 being thePTS1 cargo receptor, previously identified Arabidopsispex5mutants display either impairment of bothPTS1 andPTS2 import or defects only inPTS2 import. Here, we report the first Arabidopsispex5mutant with an exclusivePTS1 import defect. In addition to markedly diminishedGFPPTS1 import and decreased pex5‐2 protein accumulation, thispex5‐2mutant shows typical peroxisome‐related defects, including inefficient β‐oxidation and reduced growth. Growth at reduced or elevated temperatures ameliorated or exacerbatedpex5‐2peroxisome‐related defects, respectively, without markedly changing pex5‐2 protein levels. In contrast to the diminishedPTS1 import,PTS2 processing was only slightly impaired andPTS2‐GFPimport appeared normal inpex5‐2. This finding suggests that even minor peroxisomal localization of thePTS1 proteinDEG15, thePTS2‐processing protease, is sufficient to maintain robustPTS2 processing.

     
    more » « less
  4. Abstract

    Brassinosteroids (BRs) are essential plant growth‐promoting hormones involved in many processes throughout plant development, from seed germination to flowering time. SinceBRsdo not undergo long‐distance transport, cell‐ and tissue‐specific regulation of hormone levels involves both biosynthesis and inactivation. To date, tenBR‐inactivating enzymes, with at least five distinct biochemical activities, have been experimentally identified in the model plantArabidopsis thaliana. Epigenetic interactions betweenT‐DNAinsertion alleles and genetic linkage have hindered analysis of higher‐order null mutants in these genes. A previous study demonstrated that thebas1‐2 sob7‐1 ben1‐1triple‐null mutant could not be characterized due to epigenetic interactions between the exonicT‐DNAinsertions inbas1‐2andsob7‐1,causing the intronicT‐DNAinsertion ofben1‐1to revert to a partial loss‐of‐function allele. We usedCRISPR‐Cas9genome editing to avoid this problem and generated thebas1‐2 sob7‐1 ben1‐3triple‐null mutant. This triple‐null mutant resulted in an additive seedling long‐hypocotyl phenotype. We also uncovered a role forBEN1‐mediatedBR‐inactivation in seedling cotyledon petiole elongation that was not observed in the singleben1‐2null mutant but only in the absence of bothBAS1andSOB7. In addition, genetic analysis demonstrated thatBEN1does not contribute to the early‐flowering phenotype, whichBAS1andSOB7redundantly regulate. Our results show thatBAS1,BEN1,andSOB7have overlapping and independent roles based on their differential spatiotemporal tissue expression patterns

     
    more » « less
  5. Abstract

    Cells employ multiple systems to maintain cellular integrity, including mechanosensitive ion channels and the cell wall integrity (CWI) pathway. Here, we use pollen as a model system to ask how these different mechanisms are interconnected at the cellular level. MscS-Like 8 (MSL8) is a mechanosensitive channel required to protect Arabidopsis thaliana pollen from osmotic challenges during in vitro rehydration, germination, and tube growth. New CRISPR/Cas9 and artificial miRNA-generated msl8 alleles produced unexpected pollen phenotypes, including the ability to germinate a tube after bursting, dramatic defects in cell wall structure, and disorganized callose deposition at the germination site. We document complex genetic interactions between MSL8 and two previously established components of the CWI pathway, MARIS and ANXUR1/2. Overexpression of MARISR240C-FP suppressed the bursting, germination, and callose deposition phenotypes of msl8 mutant pollen. Null msl8 alleles suppressed the internalized callose structures observed in MARISR240C-FP lines. Similarly, MSL8-YFP overexpression suppressed bursting in the anxur1/2 mutant background, while anxur1/2 alleles reduced the strong rings of callose around ungerminated pollen grains in MSL8-YFP overexpressors. These data show that mechanosensitive ion channels modulate callose deposition in pollen and provide evidence that cell wall and membrane surveillance systems coordinate in a complex manner to maintain cell integrity.

     
    more » « less