ABSTRACT Of the 61 kinesins annotated inArabidopsis thaliana, many are still without assigned function. Here, we have screened an insertional mutant library of Arabidopsis pollen‐expressed kinesins for fertility defects. Insertional mutants for three kinesins showed a significant reduction in seed set. Among them, we focused on the sole kinesin‐4 expressed in pollen (kinesin‐4C, here Pollen‐Expressed Kinesin 14, PEK14). We show a seed‐set defect in the three independent allelespek14‐1, pek14‐2, and pek14‐3. This defect is male‐derived and is equally distributed throughout the silique. Maturepek14‐1anthers contain about 10% inviable pollen grains.pek14‐1pollen tubes grow 20% more slowly and show reduced pollen tube bending. Analysis of the male germ unit (MGU), as it travels through the pollen tube, demonstrates an aberrant organization of thepek14‐1MGU in 30% of pollen tubes and an increase in the distance of the MGU to the tip by 24%. Expression of GFP‐tagged PEK14 successfully complemented the observed seed set defect, as well as the growth rate, bending, and MGU organization defects observed inpek14‐1. In pollen, PEK14‐GFP is located diffusely at the pollen tube tip. PEK14‐GFP is also expressed in the root meristematic zone and is located at the mid‐zone of the phragmoplast, but no apparent root growth phenotype was observed, likely due to redundancy in this organ.
more »
« less
Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O‐arabinosyltransferase mutants
Summary HYDROXYPROLINEO‐ARABINOSYLTRANSFERASEs (HPATs) initiate a post‐translational protein modification (Hyp‐Ara) found abundantly on cell wall structural proteins. InArabidopsis thaliana,HPAT1andHPAT3are redundantly required for full pollen fertility. In addition to the lack of Hyp‐Ara inhpat1/3pollen tubes (PTs), we also found broadly disrupted cell wall polymer distributions, particularly the conversion of the tip cell wall to a more shaft‐like state. Mutant PTs were slow growing and prone to rupture and morphological irregularities. In a forward mutagenesis screen for suppressors of thehpat1/3low seed‐set phenotype, we identified a missense mutation inexo70a2, a predicted member of the vesicle‐tethering exocyst complex. The suppressed pollen had increased fertility, fewer morphological defects and partially rescued cell wall organization. A transcriptional null allele ofexo70a2also suppressed thehpat1/3fertility phenotype, as did mutants of core exocyst complex membersec15a, indicating that reduced exocyst function bypassed the PT requirement for Hyp‐Ara. In a wild‐type background,exo70a2reduced male transmission efficiency, lowered pollen germination frequency and slowed PT elongation. EXO70A2 also localized to the PT tip plasma membrane, consistent with a role in exocyst‐mediated secretion. To monitor the trafficking of Hyp‐Ara modified proteins, we generated an HPAT‐targeted fluorescent secretion reporter. Reporter secretion was partially dependent onEXO70A2and was significantly increased inhpat1/3PTs compared with the wild type, but was reduced in the suppressedexo70a2 hpat1/3tubes.
more »
« less
- Award ID(s):
- 1755482
- PAR ID:
- 10450010
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 103
- Issue:
- 4
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 1399-1419
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Overexpressing Vitamin C Defective 2 reduces fertility and alters Ca2+ signals in Arabidopsis pollenAbstract A potential strategy to mitigate oxidative damage in plants is to increase the abundance of antioxidants, such as ascorbate (i.e. vitamin C). In Arabidopsis (A. thaliana), a rate-limiting step in ascorbate biosynthesis is a phosphorylase encoded by Vitamin C Defective 2 (VTC2). To specifically overexpress VTC2 (VTC2 OE) in pollen, the coding region was expressed using a promoter from a gene with ∼150-fold higher expression in pollen, leading to pollen grains with an eight-fold increased VTC2 mRNA. VTC2 OE resulted in a near-sterile phenotype with a 50-fold decrease in pollen transmission efficiency and a five-fold reduction in the number of seeds per silique. In vitro assays revealed pollen grains were more prone to bursting (greater than two-fold) or produced shorter, morphologically abnormal pollen tubes. The inclusion of a genetically encoded Ca2+ reporter, mCherry-GCaMP6fast (CGf), revealed pollen tubes with altered tip-focused Ca2+ dynamics and increased bursting frequency during periods of oscillatory and arrested growth. Despite these phenotypes, VTC2 OE pollen failed to show expected increases in ascorbate or reductions in reactive oxygen species, as measured using a redox-sensitive dye or a roGFP2. However, mRNA expression analyses revealed greater than two-fold reductions in mRNA encoding two enzymes critical to biosynthetic pathways related to cell walls or glyco-modifications of lipids and proteins: GDP-d-mannose pyrophosphorylase (GMP) and GDP-d-mannose 3′,5′ epimerase (GME). These results support a model in which the near-sterile defects resulting from VTC2 OE in pollen are associated with feedback mechanisms that can alter one or more signaling or metabolic pathways critical to pollen tube growth and fertility.more » « less
-
null (Ed.)A wide range of proteins with diverse functions in development, defense, and stress responses are O -arabinosylated at hydroxyprolines (Hyps) within distinct amino acid motifs of continuous stretches of Hyps, as found in the structural cell wall extensins, or at non-continuous Hyps as, for example, found in small peptide hormones and a variety of plasma membrane proteins involved in signaling. Plant O -glycosylation relies on hydroxylation of Prolines to Hyps in the protein backbone, mediated by prolyl-4-hydroxylase (P4H) which is followed by O -glycosylation of the Hyp C 4 -OH group by either galactosyltransferases (GalTs) or arabinofuranosyltranferases (Ara f Ts) yielding either Hyp-galactosylation or Hyp-arabinosylation. A subset of the P4H enzymes with putative preference to hydroxylation of continuous prolines and presumably all Ara f T enzymes needed for synthesis of the substituted arabinose chains of one to four arabinose units, have been identified and functionally characterized. Truncated root-hair phenotype is one common denominator of mutants of Hyp formation and Hyp-arabinosylation glycogenes, which act on diverse groups of O -glycosylated proteins, e.g., the small peptide hormones and cell wall extensins. Dissection of different substrate derived effects may not be regularly feasible and thus complicate translation from genotype to phenotype. Recently, lack of proper arabinosylation on arabinosylated proteins has been shown to influence their transport/fate in the secretory pathway, hinting to an additional layer of functionality of O -arabinosylation. Here, we provide an update on the prevalence and types of O -arabinosylated proteins and the enzymatic machinery responsible for their modifications.more » « less
-
Pollen tubes and root hairs grow by a highly focused deposition of new wall and membrane materials at their growing apex. Comparison of the machinery that localises such growth between these cell types has revealed common components, providing important insight into how plant cells control cell expansion. Such elements include the small GTPases (e.g. ROPs and RABs), gradients and intricate spatial patterning in the fluxes of ions (e.g. Ca2+ and H+) and partitioning of membrane lipids (such as the phosphoinositides). These regulators are coupled to focused action of the secretory machinery (e.g. the exocyst) and cytoskeletal dynamics, with integral roles emerging for actin, tubulin and their associated motor proteins. These components form an integrated regulatory network that imposes robust spatial localisation of the growth machinery and so supports the production of an elongating tube-like growth form where cell expansion is limited to the very apex, that is, tip growth.more » « less
-
Nitric oxide (NO) is a key signaling molecule that regulates diverse biological processes in both animals and plants. In animals, NO regulates vascular wall tone, neurotransmission and immune response while in plants, NO is essential for development and responses to biotic and abiotic stresses [1–3]. Interestingly, NO is involved in the sexual reproduction of both animals and plants mediating physiological events related to the male gamete [2, 4]. In animals, NO stimulates sperm motility [4] and binding to the plasma membrane of oocytes [5] while in plants, NO mediates pollen-stigma interactions and pollen tube guidance [6, 7]. NO generation in pollen tubes (PTs) has been demonstrated [8] and intracellular responses to NO include cytosolic Ca2+ elevation, actin organization, vesicle trafficking and cell wall deposition [7, 9]. However, the NO-responsive proteins that mediate these responses are still elusive. Here we show that PTs of Arabidopsis lacking the pollen-specific Diacylglycerol Kinase 4 (DGK4) grow slower and become insensitive to NO-dependent growth inhibition and re-orientation responses. Recombinant DGK4 protein yields NO-responsive spectral and catalytic changes in vitro which are compatible with a role in NO perception and signaling in PTs. NO is a fast, diffusible gas and, based on our results, we hypothesize it could serve in long range signaling and/or rapid cell-cell communication functions mediated by DGK4 downstream signaling during the progamic phase of angiosperm reproduction.more » « less
An official website of the United States government
