Classifying images using supervised machine learning (ML) relies on labeled training data—classes or text descriptions, for example, associated with each image. Data‐driven models are only as good as the data used for training, and this points to the importance of high‐quality labeled data for developing a ML model that has predictive skill. Labeling data is typically a time‐consuming, manual process. Here, we investigate the process of labeling data, with a specific focus on coastal aerial imagery captured in the wake of hurricanes that affected the Atlantic and Gulf Coasts of the United States. The imagery data set is a rich observational record of storm impacts and coastal change, but the imagery requires labeling to render that information accessible. We created an online interface that served labelers a stream of images and a fixed set of questions. A total of 1,600 images were labeled by at least two or as many as seven coastal scientists. We used the resulting data set to investigate interrater agreement: the extent to which labelers labeled each image similarly. Interrater agreement scores, assessed with percent agreement and Krippendorff's alpha, are higher when the questions posed to labelers are relatively simple, when the labelers are provided with a user manual, and when images are smaller. Experiments in interrater agreement point toward the benefit of multiple labelers for understanding the uncertainty in labeling data for machine learning research.
more » « less- PAR ID:
- 10446543
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The world’s coastlines are spatially highly variable, coupled-human-natural systems that comprise a nested hierarchy of component landforms, ecosystems, and human interventions, each interacting over a range of space and time scales. Understanding and predicting coastline dynamics necessitates frequent observation from imaging sensors on remote sensing platforms. Machine Learning models that carry out supervised (i.e., human-guided) pixel-based classification, or image segmentation, have transformative applications in spatio-temporal mapping of dynamic environments, including transient coastal landforms, sediments, habitats, waterbodies, and water flows. However, these models require large and well-documented training and testing datasets consisting of labeled imagery. We describe “Coast Train,” a multi-labeler dataset of orthomosaic and satellite images of coastal environments and corresponding labels. These data include imagery that are diverse in space and time, and contain 1.2 billion labeled pixels, representing over 3.6 million hectares. We use a human-in-the-loop tool especially designed for rapid and reproducible Earth surface image segmentation. Our approach permits image labeling by multiple labelers, in turn enabling quantification of pixel-level agreement over individual and collections of images.more » « less
-
In recent years crowdsourcing has become the method of choice for gathering labeled training data for learning algorithms. Standard approaches to crowdsourcing view the process of acquiring labeled data separately from the process of learning a classifier from the gathered data. This can give rise to computational and statistical challenges. For example, in most cases there are no known computationally efficient learning algorithms that are robust to the high level of noise that exists in crowdsourced data, and efforts to eliminate noise through voting often require a large number of queries per example. In this paper, we show how by interleaving the process of labeling and learning, we can attain computational efficiency with much less overhead in the labeling cost. In particular, we consider the realizable setting where there exists a true target function in F and consider a pool of labelers. When a noticeable fraction of the labelers are perfect, and the rest behave arbitrarily, we show that any F that can be efficiently learned in the traditional realizable PAC model can be learned in a computationally efficient manner by querying the crowd, despite high amounts of noise in the responses. Moreover, we show that this can be done while each labeler only labels a constant number of examples and the number of labels requested per example, on average, is a constant. When no perfect labelers exist, a related task is to find a set of the labelers which are good but not perfect. We show that we can identify all good labelers, when at least the majority of labelers are good.more » « less
-
null (Ed.)Weakly labeled data are inevitable in various research areas in artificial intelligence (AI) where one has a modicum of knowledge about the complete dataset. One of the reasons for weakly labeled data in AI is insufficient accurately labeled data. Strict privacy control or accidental loss may also cause missing-data problems. However, supervised machine learning (ML) requires accurately labeled data in order to successfully solve a problem. Data labeling is difficult and time-consuming as it requires manual work, perfect results, and sometimes human experts to be involved (e.g., medical labeled data). In contrast, unlabeled data are inexpensive and easily available. Due to there not being enough labeled training data, researchers sometimes only obtain one or few data points per category or label. Training a supervised ML model from the small set of labeled data is a challenging task. The objective of this research is to recover missing labels from the dataset using state-of-the-art ML techniques using a semisupervised ML approach. In this work, a novel convolutional neural network-based framework is trained with a few instances of a class to perform metric learning. The dataset is then converted into a graph signal, which is recovered using a recover algorithm (RA) in graph Fourier transform. The proposed approach was evaluated on a Fashion dataset for accuracy and precision and performed significantly better than graph neural networks and other state-of-the-art methodsmore » « less
-
In the field of materials science, microscopy is the first and often only accessible method for structural characterization. There is a growing interest in the development of machine learning methods that can automate the analysis and interpretation of microscopy images. Typically training of machine learning models requires large numbers of images with associated structural labels, however, manual labeling of images requires domain knowledge and is prone to human error and subjectivity. To overcome these limitations, we present a semi-supervised transfer learning approach that uses a small number of labeled microscopy images for training and performs as effectively as methods trained on significantly larger image datasets. Specifically, we train an image encoder with unlabeled images using self-supervised learning methods and use that encoder for transfer learning of different downstream image tasks (classification and segmentation) with a minimal number of labeled images for training. We test the transfer learning ability of two self-supervised learning methods: SimCLR and Barlow-Twins on transmission electron microscopy (TEM) images. We demonstrate in detail how this machine learning workflow applied to TEM images of protein nanowires enables automated classification of nanowire morphologies ( e.g. , single nanowires, nanowire bundles, phase separated) as well as segmentation tasks that can serve as groundwork for quantification of nanowire domain sizes and shape analysis. We also extend the application of the machine learning workflow to classification of nanoparticle morphologies and identification of different type of viruses from TEM images.more » « less
-
Holographic cloud probes provide unprecedented information on cloud particle density, size and position. Each laser shot captures particles within a large volume, where images can be computationally refocused to determine particle size and location. However, processing these holograms with standard methods or machine learning (ML) models requires considerable computational resources, time and occasional human intervention. ML models are trained on simulated holograms obtained from the physical model of the probe since real holograms have no absolute truth labels. Using another processing method to produce labels would be subject to errors that the ML model would subsequently inherit. Models perform well on real holograms only when image corruption is performed on the simulated images during training, thereby mimicking non-ideal conditions in the actual probe. Optimizing image corruption requires a cumbersome manual labeling effort. Here we demonstrate the application of the neural style translation approach to the simulated holograms. With a pre-trained convolutional neural network, the simulated holograms are “stylized” to resemble the real ones obtained from the probe, while at the same time preserving the simulated image “content” (e.g. the particle locations and sizes). With an ML model trained to predict particle locations and shapes on the stylized data sets, we observed comparable performance on both simulated and real holograms, obviating the need to perform manual labeling. The described approach is not specific to holograms and could be applied in other domains for capturing noise and imperfections in observational instruments to make simulated data more like real world observations.