skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smartphone-read phage lateral flow assay for point-of-care detection of infection
The COVID-19 pandemic has highlighted the urgent need for sensitive, affordable, and widely accessible testing at the point of care. Here we demonstrate a new, universal LFA platform technology using M13 phage conjugated with antibodies and HRP enzymes that offers high analytical sensitivity and excellent performance in a complex clinical matrix. We also report its complete integration into a sensitive chemiluminescence-based smartphone-readable lateral flow assay for the detection of SARS-CoV-2 nucleoprotein. We screened 84 anti-nucleoprotein monoclonal antibody pairs in phage LFA and identified an antibody pair that gave an LoD of 25 pg mL −1 nucleoprotein in nasal swab extract using a FluorChem gel documentation system and 100 pg mL −1 when the test was imaged and analyzed by an in-house-developed smartphone reader. The smartphone-read LFA signals for positive clinical samples tested ( N = 15, with known Ct) were statistically different ( p < 0.001) from signals for negative clinical samples ( N = 11). The phage LFA technology combined with smartphone chemiluminescence imaging can enable the timely development of ultrasensitive, affordable point-of-care testing platforms for SARS-CoV-2 and beyond.  more » « less
Award ID(s):
1928334
PAR ID:
10446587
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Analyst
Volume:
148
Issue:
4
ISSN:
0003-2654
Page Range / eLocation ID:
839 to 848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 spike receptor-binding domain (RBD) in saliva samples acquired noninvasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg ml −1 for spike RBD and 110.38 ± 9.00 pg ml −1 for spike S1) as well as fast response time (∼30 min), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng ml −1 and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests. 
    more » « less
  2. Rapid and ultrasensitive point-of-care RNA detection plays a critical role in the diagnosis and management of various infectious diseases. The gold-standard detection method of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is ultrasensitive and accurate yet limited by the lengthy turnaround time (1-2 days). On the other hand, antigen test offers rapid at-home detection (15-20 min) but suffers from low sensitivity and high false-negative rates. An ideal point-of-care diagnostic device would combine the merits of PCR-level sensitivity and rapid sample-to-result workflow comparable to antigen testing. However, the existing RNA detection platform typically possesses superior sensitivity or rapid sample-to-result time, but not both. This paper reports a point-of-care microfluidic device that offers ultrasensitive yet rapid detection of viral RNA from clinical samples. The device consists of a microfluidic chip for precisely manipulating small volumes of samples, a miniaturized heater for viral lysis and ribonuclease (RNase) inactivation, a CRISPR Cas13a- electrochemical sensor for target preamplification-free and ultrasensitive RNA detection, and a smartphone-compatible potentiostat for data acquisition. As demonstrations, the devices achieve the detection of heat-inactivated SARS-CoV-2 samples with a limit of detection (LOD) down to 10 aM within 25 minutes, which is comparable to the sensitivity of RT-PCR and rapidness of antigen test. The platform also successfully distinguishes all nine positive unprocessed clinical SARS-CoV-2 nasopharyngeal swab samples from four negative samples within 25 minutes of sample-to-result time. Together, this device provides a point-of-care solution that can be deployed in diverse settings beyond laboratory environments for rapid and accurate detection of RNA from clinical samples. The device can potentially be expandable to detect other viral targets, such as human immunodeficiency virus (HIV) self-testing and Zika virus, where rapid and ultrasensitive point-of-care detection is required. 
    more » « less
  3. In the context of continued spread of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 and the emergence of new variants, the demand for rapid, accurate, and frequent detection is increasing. Moreover, the new predominant strain, Omicron variant, manifests more similar clinical features to those of other common respiratory infections. The concurrent detection of multiple potential pathogens helps distinguish SARS-CoV-2 infection from other diseases with overlapping symptoms, which is significant for providing tailored treatment to patients and containing the outbreak. Here, we report a lab-on-a-chip biosensing platform for SARS-CoV-2 detection based on the subwavelength grating micro-ring resonator. The sensing surface is functionalized by specific antibody against SARS-CoV-2 spike protein, which could produce redshifts of resonant peaks by antigen–antibody combination, thus achieving quantitative detection. Additionally, the sensor chip is integrated with a microfluidic chip featuring an anti-backflow Y-shaped structure that enables the concurrent detection of two analytes. In this study, we realized the detection and differentiation of COVID-19 and influenza A H1N1. Experimental results indicate that the limit of detection of our device reaches 100 fg/ml (1.31 fM) within 15 min detecting time, and cross-reactivity tests manifest the specificity of the optical diagnostic assay. Furthermore, the integrated packaging and streamlined workflow facilitate its use for clinical applications. Thus, the biosensing platform presents a promising approach for attaining highly sensitive, selective, multiplexed, and quantitative point-of-care diagnosis and distinction between COVID-19 and influenza. 
    more » « less
  4. null (Ed.)
    The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per μL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection. 
    more » « less
  5. null (Ed.)
    Background Health care personnel (HCP) are at high risk for exposure to the SARS-CoV-2 virus. While personal protective equipment (PPE) may mitigate this risk, prospective data collection on its use and other risk factors for seroconversion in this population is needed. Objective The primary objectives of this study are to (1) determine the incidence of, and risk factors for, SARS-CoV-2 infection among HCP at a tertiary care medical center and (2) actively monitor PPE use, interactions between study participants via electronic sensors, secondary cases in households, and participant mental health and well-being. Methods To achieve these objectives, we designed a prospective, observational study of SARS-CoV-2 infection among HCP and their household contacts at an academic tertiary care medical center in North Carolina, USA. Enrolled HCP completed frequent surveys on symptoms and work activities and provided serum and nasal samples for SARS-CoV-2 testing every 2 weeks. Additionally, interactions between participants and their movement within the clinical environment were captured with a smartphone app and Bluetooth sensors. Finally, a subset of participants’ households was randomly selected every 2 weeks for further investigation, and enrolled households provided serum and nasal samples via at-home collection kits. Results As of December 31, 2020, 211 HCP and 53 household participants have been enrolled. Recruitment and follow-up are ongoing and expected to continue through September 2021. Conclusions Much remains to be learned regarding the risk of SARS-CoV-2 infection among HCP and their household contacts. Through the use of a multifaceted prospective study design and a well-characterized cohort, we will collect critical information regarding SARS-CoV-2 transmission risks in the health care setting and its linkage to the community. International Registered Report Identifier (IRRID) DERR1-10.2196/25410 
    more » « less