skip to main content


This content will become publicly available on June 1, 2024

Title: Approaches to Evidencing Intra-Team Equity in Student Collaborative Design Decision-Making Interactions
Team- and project-based pedagogies are increasingly normative in engineering education and beyond. Student teamwork holds the promise of developing collaborative skills deemed essential for new engineers by professional accreditation bodies such as ABET. The emphasis on these models, furthermore, reflects developments in pedagogical theory, stressing the importance of experiential learning and the social construction of knowledge, repositioning the instructor as a facilitator and guide. Teamwork in an educational context differs from that in professional contexts in that learning outcomes for all team members – both in terms of technical knowledge and team-working skills – are a primary goal of the activity, even while more tangible task-related outcomes might be the main concern of the students themselves. However, team-based learning also holds the potential for team members to have negative experiences, of which instructors may have little or no awareness, especially in real-time. Teams may achieve team-level outcomes required for successful completion, in spite of uneven levels of participation and contribution. Reduced participation on the part of an individual team member may have many causes, pro-active or reactive: it may be a deliberate refusal to engage, a lack of self-confidence, or a response to hostility from other members, among other possibilities. Inequitable team interactions will lead to uneven uptake of desired learning outcomes. Fostering equity in interactions and identifying inequitable practices among team members is therefore an important part of implementing team-based pedagogies, and an essential first step in identifying and challenging systematic patterns of inequity with regard to members of historically marginalized groups. This paper will therefore explore ways in which equity in group decision-making may be conceptualized and observed, laying the foundations for identifying and addressing inequities in the student experience. It will begin by considering different potential manifestations of interactional equity, surveying notions derived from prior education research in the fields of health, mathematics, engineering, and the natural sciences. These notions include: equity of participation on the basis of quantified vocal contributions (in terms of words, utterances, or clausal units); distribution and evolution of interactional roles; equity of idea endorsement and uptake; distribution of inchargeness and influence; equity of access to positional identities and discourse practices; and team member citizenship. In the paper’s empirical component, we trial measures of equity taken or developed from this literature on a small dataset of transcripts showing verbal interactions between undergraduate student team members in a first-year engineering design course. Some measures will be qualitative and others quantitative, depending on the particular form and manifestation of equity they are designed to examine. Measures include manual coding of speech acts and interactional ‘bids’, statistical measures of utterance frequency and length, and computational approaches to modeling interactional features such as social impact and receptivity. Results are compared with the students’ own reflections on the interactions, taken immediately afterward. Recommendations are made for the application of the measures, both from research and practice perspectives. Keywords: Teamwork, Equity, Interaction, Design  more » « less
Award ID(s):
2120252
NSF-PAR ID:
10446599
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe and analyze our efforts to support Learning Assistants (LAs)—undergraduate peer educators who simultaneously take a 3-credit pedagogy course—in fostering equitable team dynamics and collaboration within a project-based engineering design course. Tonso and others have shown that (a) inequities can “live” in mundane interactions such as those among students within design teams and (b) those inequities both reflect and (re)produce broader cultural patterns and narratives (e.g. Wolfe & Powell, 2009; Tonso, 1996, 2006a, 2006b; McLoughlin, 2005). LAs could be well-positioned to notice and potentially disrupt inequitable patterns of participation within design teams. In this paper, we explore (1) How do LAs notice, diagnose, and consider responding to teamwork troubles within design teams, and (2) What ideological assumptions plausibly contribute to LAs’ sensemaking around their students’ teamwork troubles? To do so, we analyze how the LAs notice and consider responding to issues of equitable teamwork and participation, as exhibited in three related activities: (i) an in-class roleplay, (ii) observing and diagnosing teamwork troubles (TTs) in the engineering design teams, and (iii) imagining possible instructional responses to those troubles, and students’ possible reactions. We articulate three modes of thinking that roughly capture patterns in LAs’ descriptions and diagnoses of, and imagined responses to, the teamwork troubles: individual accountability, where the trouble is seen as caused by individual(s) described as “off task” or “checked out” or demonstrating some level of incompetence; delegation of work, where the trouble was located in the team leader’s inability to delegate tasks effectively to team members, or in the group’s general lack of communication about what tasks need to be completed, who should execute the tasks, and what work other groups in the team were doing; and emergent systems, where trouble was described as a group-level phenomenon emerging from the patterns of interaction amongst group members, contextual features, and larger structural forces. We find that LAs drew on individual accountability and delegation of work to evaluate TTs. Much rarer were ascriptions of TTs to interactional dynamics between teammates. We connected these modes to the underlying ideological assumptions that have consequences for how meritocracy and technocracy (Slaton, 2015; Cech, 2014) play out in an engineering design classroom and serve to ameliorate or reify engineering mindsets (Riley, 2008). The modes are asymmetric, in that emergent systems based interpretations hold more potential for elucidating ongoing social processes, for challenging meritocracy and socio-technical duality, and for seeing power differentials within interpersonal and institutional contexts. We argue for the need to better understand the ideological assumptions underlying how peer-educators—and other instructors—interpret classroom events. 
    more » « less
  2. Who and by what means do we ensure that engineering education evolves to meet the ever changing needs of our society? This and other papers presented by our research team at this conference offer our initial set of findings from an NSF sponsored collaborative study on engineering education reform. Organized around the notion of higher education governance and the practice of educational reform, our open-ended study is based on conducting semi-structured interviews at over three dozen universities and engineering professional societies and organizations, along with a handful of scholars engaged in engineering education research. Organized as a multi-site, multi-scale study, our goal is to document differences in perspectives and interest the exist across organizational levels and institutions, and to describe the coordination that occurs (or fails to occur) in engineering education given the distributed structure of the engineering profession. This paper offers for all engineering educators and administrators a qualitative and retrospective analysis of ABET EC 2000 and its implementation. The paper opens with a historical background on the Engineers Council for Professional Development (ECPD) and engineering accreditation; the rise of quantitative standards during the 1950s as a result of the push to implement an engineering science curriculum appropriate to the Cold War era; EC 2000 and its call for greater emphasis on professional skill sets amidst concerns about US manufacturing productivity and national competitiveness; the development of outcomes assessment and its implementation; and the successive negotiations about assessment practice and the training of both of program evaluators and assessment coordinators for the degree programs undergoing evaluation. It was these negotiations and the evolving practice of assessment that resulted in the latest set of changes in ABET engineering accreditation criteria (“1-7” versus “a-k”). To provide an insight into the origins of EC 2000, the “Gang of Six,” consisting of a group of individuals loyal to ABET who used the pressure exerted by external organizations, along with a shared rhetoric of national competitiveness to forge a common vision organized around the expanded emphasis on professional skill sets. It was also significant that the Gang of Six was aware of the fact that the regional accreditation agencies were already contemplating a shift towards outcomes assessment; several also had a background in industrial engineering. However, this resulted in an assessment protocol for EC 2000 that remained ambiguous about whether the stated learning outcomes (Criterion 3) was something faculty had to demonstrate for all of their students, or whether EC 2000’s main emphasis was continuous improvement. When it proved difficult to demonstrate learning outcomes on the part of all students, ABET itself began to place greater emphasis on total quality management and continuous process improvement (TQM/CPI). This gave institutions an opening to begin using increasingly limited and proximate measures for the “a-k” student outcomes as evidence of effort and improvement. In what social scientific terms would be described as “tactical” resistance to perceived oppressive structures, this enabled ABET coordinators and the faculty in charge of degree programs, many of whom had their own internal improvement processes, to begin referring to the a-k criteria as “difficult to achieve” and “ambiguous,” which they sometimes were. Inconsistencies in evaluation outcomes enabled those most discontented with the a-k student outcomes to use ABET’s own organizational processes to drive the latest revisions to EAC accreditation criteria, although the organization’s own process for member and stakeholder input ultimately restored much of the professional skill sets found in the original EC 2000 criteria. Other refinements were also made to the standard, including a new emphasis on diversity. This said, many within our interview population believe that EC 2000 had already achieved much of the changes it set out to achieve, especially with regards to broader professional skills such as communication, teamwork, and design. Regular faculty review of curricula is now also a more routine part of the engineering education landscape. While programs vary in their engagement with ABET, there are many who are skeptical about whether the new criteria will produce further improvements to their programs, with many arguing that their own internal processes are now the primary drivers for change. 
    more » « less
  3. The purpose of this research paper is to explore whether participation in an interdisciplinary collaboration program partnering Preservice Teachers (PST) and Undergraduate Engineering Students (UES) results in an increase in teamwork effectiveness. The interdisciplinary collaboration was designed as a service-learning project within existing undergraduate programs that included the development and delivery of engineering content to a K-12 audience. The collaborations were integrated into existing courses in two colleges, engineering and education. The Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness (CATME) was used midway and at the end of the project to evaluate teamwork effectiveness. Results of the analysis indicated that both PST and UES experienced a significant increase in team-member effectiveness over the course of the project in four of the five factors: interacting with team members, keeping the team on track, expecting quality, and having relevant knowledge, skills and abilities. A noticeable positive increase in student attitudes towards the task was also observed between the midway and the end of the project. Analysis also suggests that the gain in the teamwork effectiveness did not differ across majors, with both UES and PST showing similar gains. Findings from this study provide some preliminary evidence that an innovative interdisciplinary service learning experience partnering engineering and education students, had a positive impact on their teamwork skills. 
    more » « less
  4. Ability to effectively work in teams is one of the desired outcomes of engineering and engineering technology programs. Unfortunately, working in teams is still challenging for many students. Rather than contributing to team projects, some students resort to social loafing. Social loafing tends to destroy both teamwork performance and individual learning, especially in solving ill-structured problems, such as design. Furthermore, a bad experience on a past team is a significant concern as it could generate negative feelings toward future team projects. Formation of collaborative teams is a critical first step in team-project-based design courses as team composition directly affects not only teamwork processes and outcomes, but also teamwork skills and experience. This NSF-IUSE sponsored project aims to enhance students’ teamwork experiences and teamwork learning through 1) understanding how to form better student design teams and 2) identifying exercises that will effectively improve team member collaboration. We do this by comparing student characteristics and design task characteristics with the quality of the design team outcome, and examining the resulting correlations. Student characteristics cover six categories: 1) background information, 2) work structure preferences, 3) personality, 4) ability, 5) motivation, and 6) attitude. Task characteristics and design team outcomes are characterized using the Creative Product Semantic Scale. In this article, we present correlations between student/team characteristics and design project outcome, and correlations between task characteristics and design project outcome for 2020-2021 senior design teams at two institutions. For both institutions, we will present correlations between individual student characteristics and team outcome. For one institution, we will also present correlation between team-level characteristics and team outcomes. 
    more » « less
  5. Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and career preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities. 
    more » « less