- PAR ID:
- 10446623
- Date Published:
- Journal Name:
- HRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction
- Page Range / eLocation ID:
- 584 to 593
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Novel end-user programming (EUP) tools enable on-the-fly (i.e., spontaneous, easy, and rapid) creation of interactions with robotic systems. These tools are expected to empower users in determining system behavior, although very little is understood about how end users perceive, experience, and use these systems. In this paper, we seek to address this gap by investigating end-user experience with on-the-fly robot EUP. We trained 21 end users to use an existing on-the-fly EUP tool, asked them to create robot interactions for four scenarios, and assessed their overall experience. Our findings provide insight into how these systems should be designed to better support end-user experience with on-the-fly EUP, focusing on user interaction with an automatic program synthesizer that resolves imprecise user input, the use of multimodal inputs to express user intent, and the general process of programming a robot.more » « less
-
Adebisi, John (Ed.)
Non-expert users can now program robots using various end-user robot programming methods, which have widened the use of robots and lowered barriers preventing robot use by laypeople. Kinesthetic teaching is a common form of end-user robot programming, allowing users to forgo writing code by physically guiding the robot to demonstrate behaviors. Although it can be more accessible than writing code, kinesthetic teaching is difficult in practice because of users’ unfamiliarity with kinematics or limitations of robots and programming interfaces. Developing good kinesthetic demonstrations requires physical and cognitive skills, such as the ability to plan effective grasps for different task objects and constraints, to overcome programming difficulties. How to help users learn these skills remains a largely unexplored question, with users conventionally learning through self-guided practice. Our study compares how self-guided practice compares with curriculum-based training in building users’ programming proficiency. While we found no significant differences between study participants who learned through practice compared to participants who learned through our curriculum, our study reveals insights into factors contributing to end-user robot programmers’ confidence and success during programming and how learning interventions may contribute to such factors. Our work paves the way for further research on how to best structure training interventions for end-user robot programmers.
-
The field of end-user robot programming seeks to develop methods that empower non-expert programmers to task and modify robot operations. In doing so, researchers may enhance robot flexibility and broaden the scope of robot deployments into the real world. We introduce PRogramAR (Programming Robots using Augmented Reality), a novel end-user robot programming system that combines the intuitive visual feedback of augmented reality (AR) with the simplistic and responsive paradigm of trigger-action programming (TAP) to facilitate human-robot collaboration. Through PRogramAR, users are able to rapidly author task rules and desired reactive robot behaviors, while specifying task constraints and observing program feedback contextualized directly in the real world. PRogramAR provides feedback by simulating the robot’s intended behavior and providing instant evaluation of TAP rule executability to help end users better understand and debug their programs during development. In a system validation, 17 end users ranging from ages 18 to 83 used PRogramAR to program a robot to assist them in completing three collaborative tasks. Our results demonstrate how merging the benefits of AR and TAP using elements from prior robot programming research into a single novel system can successfully enhance the robot programming process for non-expert users.more » « less
-
Across many domains, end-users need to compose computational elements into novel configurations to perform their day-to-day tasks. End-user composition is a common programming activity performed by such end-users to accomplish this composition task. While there have been many studies on end-user programming, we still need a better understanding of activities involved in end-user composition and environments to support them. In this paper we report a qualitative study of four popular composition environments belonging to diverse application domains, including: Taverna workflow environment for life sciences, Loni Pipeline for brain imaging, SimMan3G for medical simulations and Kepler for scientific simulations. We interview end-users of these environments to explore their experiences while performing common compositions tasks. We use “Content Analysis” technique to analyze these interviews to explore what are the barriers to end-user composition in these domains. Furthermore, our findings show that there are some unique differences in the requirements of naive end-users vs. expert programmers. We believe that not only are these findings useful to improve the quality of end-user composition environments, but they can also help towards development of better end-user composition frameworks.more » « less
-
As service robots become more capable of autonomous behaviors, it becomes increasingly important to consider how people will be able to communicate with a robot about what task it should perform and how to do the task. There has been a rise in attention to end-user development (EUD), where researchers create interfaces that enable non-roboticist end users to script tasks for autonomous robots to perform. Currently, state-of-the-art interfaces are largely constrained, often through simplified domains or restrictive end-user interaction. Motivated by our past qualitative design work exploring how to integrate a care robot in an assisted living community, we discuss challenges of EUD in this complex domain. One set of challenges stems from different user-facing representations, e.g., certain tasks may lend themselves better to a rule-based trigger-action representations, whereas other tasks may be easier to specify via a sequence of actions. The other stems from considering the needs of multiple stakeholders, e.g., caregivers and residents of the facility may all create tasks for the robot, but the robot may not be able to share information about all tasks with all residents due to privacy concerns. We present scenarios that illustrate these challenges and also discuss possible solutions.more » « less