skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forecasting Equatorial Ionospheric Convective Instability With ICON Satellite Measurements
Key Points ICON satellite measurements used to force forecast simulations of plasma convective instability in the equatorial ionosphere Numerical simulations based on data from March 2022, were mainly accurate although there were some failures Significant improvements can be made to simulation initialization  more » « less
Award ID(s):
2230365
PAR ID:
10446724
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Space Weather
Volume:
21
Issue:
5
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The advent of a new vacuum ultraviolet (VUV) spectroscopic absorption detector for gas chromatography has enabled applications in many areas. Theoretical simulations of VUV spectra using computational chemistry can aid the new technique in situations where experimental spectra are unavailable. In this study, VUV spectral simulations of paraffin, isoparaffin, olefin, naphthene, and aromatic (PIONA) compounds using time-dependent density functional theory (TDDFT) methods were investigated. Important factors for the simulations, such as functionals/basis sets and formalism of oscillator strength calculations, were examined and parameters for future PIONA compound simulations were obtained by fitting computational results to experimental spectra. The simulations produced satisfactory correlations between experimental observations and theoretical calculations, and enabled potential analysis applications for complex higher distillate fuels, such as diesel fuel. Further improvement of the methods was proposed. 
    more » « less
  2. Abstract In this study, systematically designed wind tunnel experiments were conducted to characterize the aerodynamic performance of a DU91-W2-250 airfoil with a riblet film. To quantify the impact of the riblet film on wind turbine performance, experimental results were used as input data for numerical simulations. Large-eddy simulations were conducted for the smooth and modified airfoils under uniform and turbulent inflow conditions. For the turbulent inflow simulations, staggered cubes were introduced upstream of the wind turbine to generate velocity fluctuations in the flow. Results from the numerical simulations show that improvements in the aerodynamic performance of the airfoil with riblets enhance the aerodynamic torque that drives the wind turbine, thereby increasing the power output. The improvement in the power coefficient with the use of the riblet film is higher for turbulent incoming wind compared to uniform flow conditions. 
    more » « less
  3. Abstract We present machine‐learning interatomic potentials (MLIPs) for simulations of Si–C–O–H compounds. The MLIPs are constructed from moment tensor potentials (MTPs) and were trained to a library of configurations that included polysiloxane structures, hypothetical crystalline and amorphous SiCOH structures, and trajectories of Si–C–O–H systems obtained via ab initio molecular dynamic (aiMD) simulations at elevated temperatures. Passive, active, and hybrid learning strategies were implemented to develop the MLIPs. The MLIPs reproduce vibrational properties of polymers and SiCOH structures obtained from aiMD simulations, thus providing a tool to identify chemical units and distinct structural characteristics through their vibrational properties. Simulations of the polymer‐to‐ceramic transformation show the development of mixed tetrahedra in SiCO ceramics and align with experimental observations. Million‐atom simulations for several nanoseconds highlight the precipitation of graphitic nanosheets from a carbon‐rich SiCO precursor. Atomistic simulations with the MLIPs deliver details of chemical reaction mechanisms during the pyrolysis of polysiloxanes, including methane abstraction and Kumada‐like rearrangements that transform the siloxane backbone. While the MLIPs still leave room for systematic improvement, they deliver simulations with “density functional theory (DFT)‐like” quality at low and high temperatures. 
    more » « less
  4. Abstract The sensitivity of low-frequency gravity waves generated during the development and mature stages of an MCS to variations in the characteristics of the rimed ice parameterization were tested through idealized numerical simulations over a range of environment shears and instabilities. Latent cooling in the simulations with less dense, graupel-like rimed ice was more concentrated aloft near the melting level, while cooling in simulations with denser, hail-like rimed ice extended from the melting level to the surface. However, the cooling profiles still had significant internal variability across different environments and over each simulation’s duration. Initial wave production during the MCS developing stage was fairly similar in the hail and graupel simulations. During the mature stages, graupel simulations showed stronger perturbations in CAPE, due to the cooling and associated wave vertical motion being farther aloft; hail simulations showed stronger perturbations in LFC due to cooling and wave vertical motion being concentrated at lower levels. The differences in the cooling profiles were not uniform enough to produce consistently different higher order wave modes. However, the initiation of discrete cells ahead of the convective line was found to be highly sensitive to the nature of the prior destabilizing wave. Individual events of discrete propagation were suppressed in some of the graupel simulations due to the higher location of both peak cooling and vertical wave motion. Such results underscore the need to fully characterize MCS microphysical heating profiles and their low-frequency gravity waves to understand their structure and development. 
    more » « less
  5. A 3-D numerical model was used for multi-decadal eddy-resolving simulations of the Amundsen Sea embayment (Antarctica). A control simulation covered the historical period 2006-2023 (~2 decades) under realistic atmospheric and oceanic conditions. Three additional simulations representing the mid-21st century were conducted based on future projections from CMIP6 models ACCESS-CM2, MPI-ESM1-2-HR, MRI-ESM2-0 (scenario SSP2-4.5). These three CMIP6 models were selected based on their realism during the historical period as well as their diversity in terms of resolution and level of warming. The four simulations provided information about the regional hydrography, oceanic circulation, sea ice cover, ice shelf basal melt rates, and biogeochemical conditions (nitrogen and iron). The four simulations were then condensed into daily climatologies in order to summarize changes in the seasonal cycle of the Amundsen embayment in response to the projected warming. The present archive includes the four daily climatologies as well as all the information required to repeat the numerical experiments (code and input files). 
    more » « less