skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: mvlearn: Multiview machine learning in python
As data are generated more and more from multiple disparate sources, multiview data sets, where each sample has features in distinct views, have grown in recent years. However, no comprehensive package exists that enables non-specialists to use these methods easily. mvlearn is a Python library which implements the leading multiview machine learning methods. Its simple API closely follows that of scikit-learn for increased ease-of-use. The package can be installed from Python Package Index (PyPI) and the conda package manager and is released under the MIT open-source license. The documentation, detailed examples, and all releases are available at https://mvlearn.github.io/.  more » « less
Award ID(s):
1902440
PAR ID:
10446757
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Vanschoren, J
Date Published:
Journal Name:
Journal of machine learning research
Volume:
22
ISSN:
1532-4435
Page Range / eLocation ID:
4938-4944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MLMOD is a software package for incorporating machine learning approaches and models into simulations of microscale mechanics and molecular dynamics in LAMMPS. Recent machine learning approaches provide promising data-driven approaches for learning representations for system behaviors from experimental data and high fidelity simulations. The package facilitates learning and using data-driven models for (i) dynamics of the system at larger spatial-temporal scales (ii) interactions between system components, (iii) features yielding coarser degrees of freedom, and (iv) features for new quantities of interest characterizing system behaviors. MLMOD provides hooks in LAMMPS for (i) modeling dynamics and time-step integration, (ii) modeling interactions, and (iii) computing quantities of interest characterizing system states. The package allows for use of machine learning methods with general model classes including Neural Networks, Gaussian Process Regression, Kernel Models, and other approaches. Here we discuss our prototype C++/Python package, aims, and example usage. The package is integrated currently with the mesocale and molecular dynamics simulation package LAMMPS and PyTorch. 
    more » « less
  2. Abstract We present a draft Minimum Information About Geospatial Information System (MIAGIS) standard for facilitating public deposition of geospatial information system (GIS) datasets that follows the FAIR (Findable, Accessible, Interoperable and Reusable) principles. The draft MIAGIS standard includes a deposition directory structure and a minimum javascript object notation (JSON) metadata formatted file that is designed to capture critical metadata describing GIS layers and maps as well as their sources of data and methods of generation. The associated miagis Python package facilitates the creation of this MIAGIS metadata file and directly supports metadata extraction from both Esri JSON and GEOJSON GIS data formats plus options for extraction from user-specified JSON formats. We also demonstrate their use in crafting two example depositions of ArcGIS generated maps. We hope this draft MIAGIS standard along with the supporting miagis Python package will assist in establishing a GIS standards group that will develop the draft into a full standard for the wider GIS community as well as a future public repository for GIS datasets. 
    more » « less
  3. piqtree is an easy to use, open-source Python package that directly exposes IQ-TREE’s phylogenetic inference engine. It offers Python functions for performing many of IQ-TREE’s capabilities including phylogenetic reconstruction, ultrafast bootstrapping, branch length optimisation, ModelFinder, rapid neighbour-joining, and more. By exposing IQ-TREE’s algorithms within Python, piqtree greatly simplifies the development of new phylogenetic workflows through seamless interoperability with other Python libraries and tools mediated by the cogent3 package. It also enables users to perform interactive analyses with IQ-TREE through, for instance, Jupyter notebooks. We present the key features available in the piqtree library and a small case study that showcases its interoperability. The piqtree library can be installed withpip install piqtree, with the documentation available at https://piqtree.readthedocs.io and source at https://github.com/iqtree/piqtree. 
    more » « less
  4. null (Ed.)
    The Metabolomics Workbench (MW) is a public scientific data repository consisting of experimental data and metadata from metabolomics studies collected with mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. MW has been constantly evolving; updating its ‘mwTab’ text file format, adding a JavaScript Object Notation (JSON) file format, implementing a REpresentational State Transfer (REST) interface, and nearly quadrupling the number of datasets hosted on the repository within the last three years. In order to keep up with the quickly evolving state of the MW repository, the ‘mwtab’ Python library and package have been continuously updated to mirror the changes in the ‘mwTab’ and JSONized formats and contain many new enhancements including methods for interacting with the MW REST interface, enhanced format validation features, and advanced features for parsing and searching for specific metabolite data and metadata. We used the enhanced format validation features to evaluate all available datasets in MW to facilitate improved curation and FAIRness of the repository. The ‘mwtab’ Python package is now officially released as version 1.0.1 and is freely available on GitHub and the Python Package Index (PyPI) under a Clear Berkeley Software Distribution (BSD) license with documentation available on ReadTheDocs. 
    more » « less
  5. Sun, Xiaoyong (Ed.)
    Convolutional neural network (CNN)-based deep learning (DL) methods have transformed the analysis of geospatial, Earth observation, and geophysical data due to their ability to model spatial context information at multiple scales. Such methods are especially applicable to pixel-level classification or semantic segmentation tasks. A variety of R packages have been developed for processing and analyzing geospatial data. However, there are currently no packages available for implementing geospatial DL in the R language and data science environment. This paper introduces the geodl R package, which supports pixel-level classification applied to a wide range of geospatial or Earth science data that can be represented as multidimensional arrays where each channel or band holds a predictor variable. geodl is built on the torch package, which supports the implementation of DL using the R and C++ languages without the need for installing a Python/PyTorch environment. This greatly simplifies the software environment needed to implement DL in R. Using geodl, geospatial raster-based data with varying numbers of bands, spatial resolutions, and coordinate reference systems are read and processed using the terra package, which makes use of C++ and allows for processing raster grids that are too large to fit into memory. Training loops are implemented with the luz package. The geodl package provides utility functions for creating raster masks or labels from vector-based geospatial data and image chips and associated masks from larger files and extents. It also defines a torch dataset subclass for geospatial data for use with torch dataloaders. UNet-based models are provided with a variety of optional ancillary modules or modifications. Common assessment metrics (i.e., overall accuracy, class-level recalls or producer’s accuracies, class-level precisions or user’s accuracies, and class-level F1-scores) are implemented along with a modified version of the unified focal loss framework, which allows for defining a variety of loss metrics using one consistent implementation and set of hyperparameters. Users can assess models using standard geospatial and remote sensing metrics and methods and use trained models to predict to large spatial extents. This paper introduces the geodl workflow, design philosophy, and goals for future development. 
    more » « less