- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Barry, Declan T. (2)
-
Beitel, Mark (2)
-
Carmichael, Iain D. (2)
-
Eggert, Kathryn F. (2)
-
Madden, Lynn M. (2)
-
Zheng, Xiaoying (2)
-
Ablin P (1)
-
Bergman, Emma (1)
-
Cammack, Katharine M. (1)
-
Carmichael I (1)
-
Carmichael, Iain (1)
-
Chang A (1)
-
Dasgupta, Nabarun (1)
-
Farnum, Scott O. (1)
-
Franz C (1)
-
Gaeta Gazzola, Marina (1)
-
Gazzola, Marina Gaeta (1)
-
Gramfort A. (1)
-
Guo R (1)
-
Jegede, Oluwole (1)
-
- Filter by Editor
-
-
Vanschoren, J (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gaeta Gazzola, Marina; Carmichael, Iain D.; Madden, Lynn M.; Dasgupta, Nabarun; Beitel, Mark; Zheng, Xiaoying; Eggert, Kathryn F.; Farnum, Scott O.; Barry, Declan T. (, Journal of Substance Abuse Treatment)
-
Carmichael, Iain; Marron, J. S. (, Electronic Journal of Statistics)
-
Perry R; Mischler G; Guo R; Lee T; Chang A; Koul A; Franz C; Richard H; Carmichael I; Ablin P; et al (, Journal of machine learning research)Vanschoren, J (Ed.)As data are generated more and more from multiple disparate sources, multiview data sets, where each sample has features in distinct views, have grown in recent years. However, no comprehensive package exists that enables non-specialists to use these methods easily. mvlearn is a Python library which implements the leading multiview machine learning methods. Its simple API closely follows that of scikit-learn for increased ease-of-use. The package can be installed from Python Package Index (PyPI) and the conda package manager and is released under the MIT open-source license. The documentation, detailed examples, and all releases are available at https://mvlearn.github.io/.more » « less
An official website of the United States government

Full Text Available