skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally
Abstract

Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co‐dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.

 
more » « less
Award ID(s):
1831944
PAR ID:
10446808
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
24
ISSN:
2045-7758
Page Range / eLocation ID:
p. 17744-17761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Functional traits mediate species' responses to, and roles within, their environment and are constrained by evolutionary history. While we have a strong understanding of trait evolution for macro‐taxa such as birds and mammals, our understanding of invertebrates is comparatively limited. Here, we address this gap in North American beetles with a sample of ground beetles (Carabidae), leveraging a large‐scale collection and digitization effort by the National Ecological Observatory Network (NEON). For 154 ground beetle species, we measured seven morphological traits, which we placed into a recently developed effect–response framework that characterizes traits by how they predict species' effects on their ecosystems or responses to environmental stressors. We then used cytochrome oxidase 1 sequences from the same specimens to generate a phylogeny and tested the evolutionary tempo and mode of the traits. We found strong phylogenetic signal in, and correlations among, ground beetle morphological traits. These results indicate that, for these species, beetle body shape trait evolution is constrained, and phylogenetic inertia is a stronger driver of beetle traits than (recent) environmental responses. Strong correlations among effect and response traits suggest that future environmental drivers are likely to affect both ecological composition and functioning in these beetles.

     
    more » « less
  2. Abstract

    Evolutionary relatedness underlies patterns of functional diversity in the natural world. Hyperspectral remote sensing has the potential to detect these patterns in plants through inherited patterns of leaf reflectance spectra. We collected leaf reflectance data across the California flora from plants grown in a common garden. Regions of the reflectance spectra vary in the depth and strength of phylogenetic signal. We also show that these differences are much greater than variation due to the geographic origin of the plant. At the phylogenetic extent of the California flora, spectral variation explained by the combination of ecotypic variation (divergent evolution) and convergent evolution of disparate lineages was minimal (3%–7%) but statistically significant. Interestingly, at the extent of a single genus (Arctostaphylos) no unique variation could be attributed to geographic origin. However, up to 18% of the spectral variation amongArctostaphylosindividuals was shared between phylogeny and intraspecific variation stemming from ecotypic differences (i.e., geographic origin). Future studies could conduct more structured experiments (e.g., transplants or observations along environmental gradients) to disentangle these sources of variation and include other intraspecific variation (e.g., plasticity). We constrain broad‐scale spectral variability due to ecotypic sources, providing further support for the idea that phylogenetic clusters of species might be detectable through remote sensing. Phylogenetic clusters could represent a valuable dimension of biodiversity monitoring and detection.

     
    more » « less
  3. Abstract

    Environmental variation commonly drives functional trait diversity within species, among species, and across communities. Climate and shared evolutionary history can both influence trait–environment relationships. We studied variation in plant functional traits among closely relatedCostusspecies occurring across environmental gradients, the extent to which this variation occurs within single species, and how that variation may be influenced by shared evolutionary history. We measured leaf, aboveground stem, rhizome, and fine root traits of 17 species ofCostusin eight sites in Costa Rica and Panama, which varied in elevation, temperature, and precipitation. We then assessed the relationships among traits and environmental variables and estimated the phylogenetic signal of the traits. We observed significant relationships between functional traits and climate. Stomatal conductance decreased, but stem density and rhizome dry matter content increased with decreasing mean annual temperature and precipitation seasonality in both cross‐species and single‐species analyses. This suggests that herbaceous species have a similar trade‐off between plant hydraulic efficiency and safety as found in woody plants. Mean annual temperature was a stronger driver of trait variation than mean annual precipitation. We also found phylogenetic signal in leaf and stem structural traits (i.e., closely related species are more similar than distantly related species), but not in physiological or belowground traits. Our results demonstrate significant trait variation within and among species ofCostus, a widespread understory and herbaceous genus in the tropics, which is driven by both climate and shared evolutionary history.

     
    more » « less
  4. Abstract

    Traits underlie organismal responses to their environment and are essential to predict community responses to environmental conditions under global change. Species differ in life‐history traits, morphometrics, diet type, reproductive characteristics and habitat utilization.

    Trait associations are widely analysed using phylogenetic comparative methods (PCM) to account for correlations among related species. Similarly, traits are measured for some but not all species, and missing continuous traits (e.g. growth rate) can be imputed using ‘phylogenetic trait imputation’ (PTI), based on evolutionary relatedness and trait covariance. However, PTI has not been available for categorical traits, and estimating covariance among traits without ecological constraints risks inferring implausible evolutionary mechanisms.

    Here, we extend previous PCM and PTI methods by (1) specifying covariance among traits as a structural equation model (SEM), and (2) incorporating associations among both continuous and categorical traits. Fitting a SEM replaces the covariance among traits with a set of linear path coefficients specifying potential evolutionary mechanisms. Estimated parameters then represent regression slopes (i.e. the average change in trait Y given an exogenous change in trait X) that can be used to calculate both direct effects (X impacts Y) and indirect effects (X impacts Z and Z impacts Y).

    We demonstrate phylogenetic structural‐equation mixed‐trait imputation using 33 variables representing life history, reproductive, morphological, and behavioural traits for all >32,000 described fishes worldwide. SEM coefficients suggest that one degree Celsius increase in habitat is associated with an average 3.5% increase in natural mortality (including a 1.4% indirect impact that acts via temperature effects on the growth coefficient), and an average 3.0% decrease in fecundity (via indirect impacts on maximum age and length). Cross‐validation indicates that the model explains 54%–89% of variance for withheld measurements of continuous traits and has an area under the receiver‐operator‐characteristics curve of 0.86–0.99 for categorical traits.

    We use imputed traits to classify all fishes into life‐history types, and confirm a phylogenetic signal in three dominant life‐history strategies in fishes. PTI using phylogenetic SEMs ensures that estimated parameters are interpretable as regression slopes, such that the inferred evolutionary relationships can be compared with long‐term evolutionary and rearing experiments.

     
    more » « less
  5. Abstract

    Understanding the origins and maintenance of host specificity, or why horizontally‐acquired symbionts associate with some hosts but not others, remains elusive. In this study, we explored whether patterns of host specificity in foliar fungal endophytes, a guild of highly diverse fungi that occur within the photosynthetic tissues of all major plant lineages, were related to characteristics of the plant community. We comprehensively sampled all plant host species within a single community and tested the relationship between plant abundance or plant evolutionary relatedness and metrics of endophyte host specificity. We quantified host specificity with methods that considered the total endophyte community per plant host (i.e., multivariate methods) along with species‐based methods (i.e., univariate metrics) that considered host specificity from the perspective of each endophyte. Univariate host specificity metrics quantified plant alpha‐diversity (structural specificity), plant beta‐diversity (beta‐specificity), and plant phylogenetic diversity (phylogenetic specificity) per endophyte. We standardized the effect sizes of univariate host specificity metrics to randomized distributions to avoid spurious correlations between host specificity metrics and endophyte abundance. We found that more abundant plant species harbored endophytes that occupied fewer plant species (higher structural specificity) and were consistently found in the same plant species across the landscape (higher beta‐specificity). There was no relationship between plant phylogenetic distance and endophyte community dissimilarity. We still found that endophyte community composition significantly varied among plant species, families, and major groups, supporting a plant identity effect. In particular, endophytes in angiosperm lineages associated with narrower phylogenetic breadths of plants (higher phylogenetic specificity) compared to endophytes within conifer and fern lineages. Overall, an effect of plant species abundance may help explain why horizontally‐transmitted endophytes vary geographically within host species ranges.

     
    more » « less