skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection and modelling of CH3NC in TMC-1
ABSTRACT Two closely related isomeric pairs of cyanides, CH3[CN/NC] and H2C[CN/NC], are studied in cold, dark interstellar cloud conditions. In contrast to the diverse detections of methyl cyanide (CH3CN) in space, methyl isocyanide (CH3NC) has previously only been observed in warm and hot star-forming regions. We report the detection of CH3NC in the cold pre-stellar core Taurus Molecular Cloud (TMC-1) using the Green Bank Telescope with a detection significance of 13.4σ. Hyperfine transitions in H2CCN and quadrupole interactions in CH3CN and CH3NC were matched to a spectral line survey from the Green Bank Telescope Observations of TMC-1: Hunting for Aromatic Molecules large project on the Green Bank Telescope, resulting in abundances with respect to hydrogen of $$1.92^{+0.13}_{-0.07} \times 10^{-9}$$ for the cyanomethyl radical (H2CCN), $$5.02^{+3.08}_{-2.06} \times 10^{-10}$$ for CH3CN, and $$2.97^{+2.10}_{-1.37} \times 10^{-11}$$ for CH3NC. Efforts to model these molecules with the three-phase gas-grain code nautilus in TMC-1 conditions overproduce both CH3CN and CH3NC, though the ratio of ∼5.9 per cent is consistent across observations and models of these species. This may point to missing destruction routes in the model. The models capture the larger abundance of H2CCN well. Dissociative recombination is found to be the primary production route for these molecules, and reactions with abundant ions are found to be the primary destruction routes. H + CH3NC is investigated with transition state theory as a potential destruction route, but found to be too slow in cold cloud conditions to account for the discrepancy in modelled and observed abundances of CH3NC.  more » « less
Award ID(s):
1906489 2205126
PAR ID:
10446864
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2154-2171
Size(s):
p. 2154-2171
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the detection of the lowest-energy conformer of E -1-cyano-1,3-butadiene ( E -1- C 4 H 5 CN ), a linear isomer of pyridine, using the fourth data reduction of the GBT Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) deep spectral survey toward TMC-1 with the 100 m Green Bank Telescope. We perform velocity stacking and matched-filter analyses using Markov chain Monte Carlo simulations and find evidence for the presence of this molecule at the 5.1 σ level. We derive a total column density of 3.8 − 0.9 + 1.0 × 10 10 cm −2 , which is predominantly found toward two of the four velocity components we observe toward TMC-1. We use this molecule as a proxy for constraining the gas-phase abundance of the apolar hydrocarbon 1,3-butadiene. Based on the three-phase astrochemical modeling code NAUTILUS and an expanded chemical network, our model underestimates the abundance of cyano-1,3-butadiene by a factor of 19, with a peak column density of 2.34 × 10 10 cm −2 for 1,3-butadiene. Compared to the modeling results obtained in previous GOTHAM analyses, the abundance of 1,3-butadiene is increased by about two orders of magnitude. Despite this increase, the modeled abundances of aromatic species do not appear to change and remain underestimated by one to four orders of magnitude. Meanwhile, the abundances of the five-membered ring molecules increase proportionally with 1,3-butadiene by two orders of magnitude. We discuss the implications for bottom-up formation routes to aromatic and polycyclic aromatic molecules. 
    more » « less
  2. null (Ed.)
    ABSTRACT The E-isomer of cyanomethanimine (HNCHCN) was first identified in Sagittarius B2(N) (Sgr B2(N)) by a comparison of the publicly available Green Bank Telescope (GBT) PRIMOS survey with laboratory rotational spectra. Recently, Z-cyanomethanimine was detected in the quiescent molecular cloud G+0.693−0.027 with the IRAM 30-m telescope. Cyanomethanimine is a chemical intermediate in the proposed synthetic routes of adenine, and may play an important role in forming biological molecules in the interstellar medium. Here we present a new modelling study of cyanomethanimine, using the nautilus gas–grain reaction network and code with the addition of over 400 chemical reactions of the three cyanomethanimine isomers and related species. We apply cold isothermal core, hot core, and C-type shock models to simulate the complicated and heterogeneous physical environment in and in front of Sgr B2(N), and in G+0.693−0.027. We identify the major formation and destruction routes of cyanomethanimine, and find that the calculated abundances of the cyanomethanimine isomers and the ratio of Z-isomer to E-isomer are both in reasonable agreement with observations for selected environments. In particular, we conclude that these isomers are most likely formed within or near the hot core without the impact of shocks, or in the cold regions with shocks. 
    more » « less
  3. Polycyclic aromatic hydrocarbons (PAHs) are organic molecules containing adjacent aromatic rings. Infrared emission bands show that PAHs are abundant in space, but only a few specific PAHs have been detected in the interstellar medium. We detected 1-cyanopyrene, a cyano-substituted derivative of the related four-ring PAH pyrene, in radio observations of the dense cloud TMC-1, using the Green Bank Telescope. The measured column density of 1-cyanopyrene is 1 .52×10 12 cm−2, from which we estimate that pyrene contains up to 0.1% of the carbon in TMC-1. This abundance indicates that interstellar PAH chemistry favors the production of pyrene. We suggest that some of the carbon supplied to young planetary systems is carried by PAHs that originate in cold molecular clouds. 
    more » « less
  4. Abstract We present laboratory rotational spectroscopy of five isomers of cyanoindene (2-, 4-, 5-, 6-, and 7-cyanoindene) using a cavity Fourier transform microwave spectrometer operating between 6 and 40 GHz. Based on these measurements, we report the detection of 2-cyanoindene (1H-indene-2-carbonitrile; 2- C 9 H 7 CN ) in GOTHAM line survey observations of the dark molecular cloud TMC-1 using the Green Bank Telescope at centimeter wavelengths. Using a combination of Markov Chain Monte Carlo, spectral stacking, and matched filtering techniques, we find evidence for the presence of this molecule at the 6.3 σ level. This provides the first direct observation of the ratio of a cyano-substituted polycyclic aromatic hydrocarbon to its pure hydrocarbon counterpart, in this case indene, in the same source. We discuss the possible formation chemistry of this species, including why we have only detected one of the isomers in TMC-1. We then examine the overall hydrocarbon:CN-substituted ratio across this and other simpler species, as well as compare to those ratios predicted by astrochemical models. We conclude that while astrochemical models are not yet sufficiently accurate to reproduce absolute abundances of these species, they do a good job at predicting the ratios of hydrocarbon:CN-substituted species, further solidifying -CN tagged species as excellent proxies for their fully symmetric counterparts. 
    more » « less
  5. Unidentified infrared emission bands are ubiquitous in many astronomical sources. These bands are widely, if not unanimously, attributed to collective emissions from polycyclic aromatic hydrocarbon (PAH) molecules, yet no single species of this class has been identified in space. Using spectral matched filtering of radio data from the Green Bank Telescope, we detected two nitrile-group–functionalized PAHs, 1- and 2-cyanonaphthalene, in the interstellar medium. Both bicyclic ring molecules were observed in the TMC-1 molecular cloud. In this paper, we discuss potential in situ gas-phase PAH formation pathways from smaller organic precursor molecules. 
    more » « less