skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Review of nonlinear electrokinetic flows in insulator‐based dielectrophoresis: From induced charge to Joule heating effects
Abstract Insulator‐based dielectrophoresis (iDEP) has been increasingly used for particle manipulation in various microfluidic applications. It exploits insulating structures to constrict and/or curve electric field lines to generate field gradients for particle dielectrophoresis. However, the presence of these insulators, especially those with sharp edges, causes two nonlinear electrokinetic flows, which, if sufficiently strong, may disturb the otherwise linear electrokinetic motion of particles and affect the iDEP performance. One is induced charge electroosmotic (ICEO) flow because of the polarization of the insulators, and the other is electrothermal flow because of the amplified Joule heating in the fluid around the insulators. Both flows vary nonlinearly with the applied electric field (either DC or AC) and exhibit in the form of fluid vortices, which have been utilized to promote some applications while being suppressed in others. The effectiveness of iDEP benefits from a comprehensive understanding of the nonlinear electrokinetic flows, which is complicated by the involvement of the entire iDEP device into electric polarization and thermal diffusion. This article is aimed to review the works on both the fundamentals and applications of ICEO and electrothermal flows in iDEP microdevices. A personal perspective of some future research directions in the field is also given.  more » « less
Award ID(s):
2100772 1704379
PAR ID:
10446963
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ELECTROPHORESIS
Volume:
43
Issue:
1-2
ISSN:
0173-0835
Format(s):
Medium: X Size: p. 167-189
Size(s):
p. 167-189
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Insulator‐based dielectrophoresis (iDEP) exploits the electric field gradients formed around insulating structures to manipulate particles for diverse microfluidic applications. Compared to the traditional electrode‐based dielectrophoresis, iDEP microdevices have the advantages of easy fabrication, free of water electrolysis, and robust structure, etc. However, the presence of in‐channel insulators may cause thermal effects because of the locally amplified Joule heating of the fluid. The resulting electrothermal flow circulations are exploited in this work to trap and concentrate nanoscale particles (of 100 nm diameter and less) in a ratchet‐based iDEP microdevice. Such Joule heating‐enabled electrothermal enrichment of nanoparticles are found to grow with the increase of alternating current or direct current electric field. It also becomes more effective for larger particles and in a microchannel with symmetric ratchets. Moreover, a depth‐averaged numerical model is developed to understand and simulate the various parametric effects, which is found to predict the experimental observations with a good agreement. 
    more » « less
  2. Abstract Insulator‐based dielectrophoresis (iDEP) is the electrokinetic migration of polarized particles when subjected to a non‐uniform electric field generated by the inclusion of insulating structures between two remote electrodes. Electrode spacing is considerable in iDEP systems when compared to electrode‐based DEP systems, therefore, iDEP systems require high voltages to achieve efficient particle manipulation. A consequence of this is the temperature increase within the channel due to Joule heating effects, which, in some cases, can be detrimental when manipulating biological samples. This work presents an experimental and modeling study on the increase in temperature inside iDEP devices. For this, we studied seven distinct channel designs that mainly differ from each other in their post array characteristics: post shape, post size and spacing between posts. Experimental results obtained using a custom‐built copper Resistance Temperature Detector, based on resistance changes, show that the influence of the insulators produces a difference in temperature rise of approximately 4°C between the designs studied. Furthermore, a 3D COMSOL model is also introduced to evaluate heat generation and dissipation, which is in good agreement with the experiments. The model allowed relating the difference in average temperature for the geometries under study to the electric resistance posed by the post array in each design. 
    more » « less
  3. Abstract Insulator‐based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non‐Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning‐induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions. 
    more » « less
  4. null (Ed.)
    Induced-charge electro-osmotic (ICEO) flow caused by an alternating electric field applied around an infinitely long, ideally polarizable, uncharged circular cylinder in a binary electrolyte with unequal cation and anion diffusion coefficients is analysed. The thin-Debye-layer and weak-field approximations are invoked to compute the time-averaged, or rectified, quadrupolar ICEO flow around the cylinder. The inequality of ionic diffusion coefficients leads to transient ion concentration gradients, or concentration polarization, in the electroneutral bulk electrolyte outside the Debye layer. Consequently, the electric potential in the bulk is non-harmonic. Further, the concentration polarization alters the electro-osmotic slip at the surface of the cylinder and generates body forces in the bulk, both of which affect the rectified ICEO flow. Predictions for the strength of the rectified flow for varying ratio of ionic diffusion coefficients are in reasonable agreement with available experimental data. Our work highlights that an inequality in ionic diffusion coefficients – which all electrolytes possess to some extent – is an important factor in modelling ICEO flows. 
    more » « less
  5. Abstract Instability occurs in the electrokinetic flow of fluids with conductivity and/or permittivity gradients if the applied electric field is beyond a critical value. Understanding such an electrokinetic instability is significant for both improved transport (via the suppressed instability) and enhanced mixing (via the promoted instability) of liquid samples in microfluidic applications. This work presents the first study of Joule heating effects on electrokinetic microchannel flows with conductivity gradients using a combined experimental and numerical method. The experimentally observed flow patterns and measured critical electric fields under Joule heating effects to different extents are reasonably predicted by a depth‐averaged numerical model. It is found that Joule heating increases the critical electric field for the onset of electrokinetic instability because the induced fluid temperature rise and in turn the fluid property change (primarily the decreased permittivity) lead to a smaller electric Rayleigh number. 
    more » « less