skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinct Bimetallic Cooperativity Among Water Reduction Catalysts Containing [Co III Co III ], [Ni II Ni II ], and [Zn II Zn II ] Cores
Abstract Three binuclear species [LCoIII2(μ‐Pz)2](ClO4)3(1), [LNiII2(CH3OH)2Cl2]ClO4(2), and [LZnII2Cl2]PF6(3) supported by the deprotonated form of the ligand 2,6‐bis[bis(2‐pyridylmethyl) amino‐methyl]‐4‐methylphenol were synthesized, structurally characterized as solids and in solution, and had their electrochemical and spectroscopic behavior established. Species1–3had their water reduction ability studied aiming to interrogate the possible cooperative catalytic activity between two neighboring metal centers. Species1and2reduced H2O to H2effectively at an applied potential of −1.6 VAg/AgCl, yielding turnover numbers of 2,820 and 2,290, respectively, after 30 minutes. Species3lacked activity and was used as a negative control to eliminate the possibility of ligand‐based catalysis. Pre‐ and post‐catalytic data gave evidence of the molecular nature of the process within the timeframe of the experiments. Species1showed structural, rather than electronic cooperativity, while species2displayed no obvious cooperativity. DFT methods complemented the experimental results determining plausible mechanisms.  more » « less
Award ID(s):
1856437
PAR ID:
10446992
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
23
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bis(triphenylsulfonium) tetrachloridomanganate(II), (C18H15S)2[MnCl4] (I), triphenylsulfonium tetrachloridoferrate(III), (C18H15S)[FeCl4] (II), and bis(triphenylsulfonium) tetrachloridocobaltate(II), (C18H15S)2[CoCl4] (III), crystallize in the monoclinic space groupsP21/n[(I) and (III)] andP21/c[(II)]. Compounds (I) and (III) each contain two crystallographically independent triphenylsulfonium (TPS+) cations in the asymmetric unit, whereas (II) has one. In all three compounds, the sulfonium centers adopt distorted trigonal–pyramidal geometries, with S—C bond lengths falling roughly in the 1.78–1.79 Å range and C—S—C angles observed at about 101 to 106°. The [MCl4]n−anions (M= Mn2+, Fe3+, Co2+;n= 2,1,2) adopt slightly distorted tetrahedral geometries, withM—Cl bond lengths in the 2.19–2.38 Å range and Cl—M—Cl angles of approximately 104–113°. Hirshfeld surface analyses shows that H...H and H...C contacts dominate the TPS+cation environments, whereas H...Cl and shortM—S interactions link each [MCl4]n−anion to the surrounding cations. In (I) and (III), inversion-centered π–π stacking further consolidates the crystal packing, while in (II) no π–π interactions are observed. 
    more » « less
  2. Abstract A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry. 
    more » « less
  3. Abstract A pair of novel Fe‐alkynyl complexes, [FeIII(HMTI)(C2SiEt3)2]ClO4(2) and [FeII(HMTI)(C2SiEt3)(NCCH3)]ClO4(3), is described herein. Reaction of Fe(meso‐HMC)Cl(ClO4)]ClO4(1) with lithiated triethylsilylacetylene and subsequent exposure to oxygen yielded the bis‐alkynyl2containing the dehydrogenated tetraimine macrocycle (HMTI). Reduction of2by mossy zinc in acetonitrile yielded the mono‐alkynyl3. The structures of2and3were determined using single‐crystal X‐ray diffraction. Analysis of visible absorption and electrochemical data establishes the redox‐active nature of the HMTI macrocycle, and indicates significant interactions between the Fedπ and tetraimine π* orbitals. These deductions are further supported by density functional theory calculations. 
    more » « less
  4. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O. 
    more » « less
  5. Bis(triphenylsulfonium) tetrachloridozinc(II), (C18H15S)2[ZnCl4] (I), bis(triphenylsulfonium) tetrachloridocadmium(II), (C18H15S)2[CdCl4] (II), and bis(triphenylsulfonium) tetrachloridomercury(II) methanol monosolvate, (C18H15S)2[HgCl4]·CH3OH (III), each crystallize in the monoclinic space groupP21/n. In all three structures, there are two crystallographically independent triphenylsulfonium (TPS) cations per asymmetric unit, each adopting a distorted trigonal–pyramidal geometry about the S atom (S—C bond lengths in the 1.77–1.80 Å range and C—S—C angles of 100–107°). The [MCl4]2–anions (M= Zn2+, Cd2+, Hg2+) are tetrahedral; their M—Cl bond lengths systematically increase from Zn2+to Hg2+, consistent with the larger ionic radius of the heavier metal. Hirshfeld surface analyses show that H...H and H...C contacts dominate the TPS cation environments, whereas H...Cl and S...Minteractions anchor each [MCl4]2–anion to two surrounding TPS cations. Weak C—H...Cl hydrogen bonds, as well as inversion-centered π–π stacking, generate layers in (I) and (II) and dimeric [(TPS)2–HgCl4]2assemblies in (III). 
    more » « less