skip to main content


Title: Biogeochemical and Hydrological Variables Synergistically Influence Nitrate Variability in Coastal Deltaic Wetlands
Abstract

Coastal river deltas are centers of surface water nitrate processing, yet the mechanisms controlling spatio‐temporal patterns in nutrient variability are still little understood. Nitrate fluctuations in these systems are controlled by complex interactions between hydrological and biogeochemical drivers, which act together to transport and transform inorganic nutrients. Distinguishing the contributions of these drivers and identifying wetland zones where nitrate processing is occurring can be difficult, yet is critical to make assessments of nutrient removal capacity in deltaic wetlands. To address these issues, we analyze relationships among regional “external” (river discharge, tides, wind) and local “internal” (water level, temperature, turbidity, and nitrate) variables in a deltaic wetland in coastal Louisiana by coupling a process connectivity framework with information theory measures. We classify variable interactions according to whether they work uniquely, redundantly, or synergistically to influence nitrate dynamics and identify timescales of interaction. We find that external drivers work together to influence nitrate transport. Patterns of hydrological and sediment connectivity change over time due to tidal flushing and discharge variation. This connectivity influences the emergence of functional zones where local nitrate fluctuations and temperature and water level process couplings are strong controls on nitrate variability. High vegetation density decreases hydrological process connectivity, even during periods of high river discharge, but it also increases biogeochemical process connections, due to the lengthening of the hydraulic residence time. Based on these results we make recommendations for monitoring nitrate in a wetland.

 
more » « less
Award ID(s):
1350336
NSF-PAR ID:
10447022
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
9
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coupled groundwater flow and heat transport within hyporheic zones extensively affect water, energy, and solute exchange with surrounding sediments. The local and cumulative implications of this tightly coupled process strongly depend on characteristics of drivers (i.e., discharge and temperature of the water column) and modulators (i.e., hydraulic and thermal properties of the sediment). With this in mind, we perform a systematic numerical analysis of hyporheic responses to understand how the temporal variability of river discharge and temperature affect flow and heat transport within hyporheic zones. We identify typical time series of river discharge and temperature from gauging stations along the headwater region of Mississippi River Basin, which are characterized by different degrees of flow alteration, to drive a physics‐based model of the hyporheic exchange process. Our modeling results indicate that coupled groundwater flow and heat transport significantly affects the dynamic response of hyporheic zones, resulting in substantial differences in exchange rates and characteristic time scales of hyporheic exchange processes. We also find that the hyporheic zone dampens river temperature fluctuations increasingly with higher frequency of temperature fluctuations. This dampening effect depends on the system transport time scale and characteristics of river discharge and temperature variability. Furthermore, our results reveal that the flow alteration reduces the potential of hyporheic zones to act as a temperature buffer and hinders denitrification within hyporheic zones. These results have significant implications for understanding the drivers of local variability in hyporheic exchange and the implications for the development of thermal refugia and ecosystem functioning in hyporheic zones.

     
    more » « less
  2. Atmospheric frontal passage is a common meteorological event that can significantly affect hydrodynamics in coastal environments, including the hydrological connectivity between channels and floodplains that regulates material transport in river deltas. This study is focused on the influence of atmospheric cold fronts on the hydrological connectivity between channels and floodplains within the Wax Lake Delta using the Delft3D FM model. The results demonstrate a substantial effect of passing cold fronts on the exchange of water and transport fraction between the primary channels and floodplains. This impact is intricately connected to the morphodynamical characteristics of the floodplains, the intensity of cold fronts, river discharge, Coriolis force, and tidal currents. The passing cold fronts can enhance or reverse the direction of water exchange between channels and floodplains. For floodplains, the passage of cold fronts can lead to an increase in the rate of water exchange by as much as five times. In the WLD, a substantial fraction of water, 39-58%, is flowing through the floodplains to the bay at the delta front influenced by the prevailing discharge, although there is a significant spatial heterogeneity. Passing cold fronts can alter the transport distribution, depending on the phase of the front. An increase in river discharge tends to bolster floodplain connectivity and lessen the effects of cold fronts. Conversely, decreased river discharge results in reduced connectivity and exacerbates the fluctuations induced by cold fronts. Moreover, the findings indicate that from the apex to downstream, the contribution of channels decreases as they become shallower, while the role of the floodplains increases, leading to a less distinct demarcation between channels and floodplains. It has also been noted that an increase in river discharge correlates with an increased contribution from floodplains to transfer water to the bay.

     
    more » « less
  3. Abstract

    Floods are dominant controls on export of solutes from catchments. In contrast, low‐flow periods such as droughts are potentially dominant control points for biogeochemical processing, enhancing spatiotemporal variation in solute concentrations, stream metabolism, and nutrient uptake. Using complementary time series (i.e., an Eulerian reference frame) and longitudinal profiling (i.e., a Lagrangian reference frame), we investigated hydrologic controls on temporal and spatial variation in solute flux and metabolism in the Lower Santa Fe River (FL, USA), where highly colored surface water mixes with exceptionally clear groundwater from springs. Gage measurements suggest groundwater inputs ranged from <1% (during extreme floods) to 86% (during extreme drought) of total discharge (Q). Mass transport of most solutes was dominated by high‐Qperiods. Most soluteCQrelationships exhibited statistically significant slope breakpoints near the transition between surface and groundwater dominance. In particular, parameters controlling water column light attenuation were chemostatic above medianQbut markedly reduced at lowQ. As a result, river metabolism and assimilatory nitrate (NO3) uptake were consistently suppressed at highQand enhanced at lowQ, with greater variability in response to drivers other than water column light transmittance. Spatial variation in solute concentrations was also enhanced at lowQ, induced by discrete groundwater inflow and biogeochemical processing along the reach. Contrasting reference frames yielded corroborative evidence for transport dominance at highQ, which damps spatiotemporal heterogeneity. In contrast, low‐Qperiods enable localized mixing controls on solute concentrations and high rates of metabolism and nutrient processing that increase spatiotemporal variability.

     
    more » « less
  4. Abstract

    Human activities have increased nitrate export from rivers, degrading coastal water quality. At deltaic river mouths, the flow of water through wetlands increases nitrate removal, and the spatial organization of removal rates influences coastal water quality. To understand the spatial distribution of nitrate removal in a river‐dominated delta, we deployed 23 benthic chambers across ecogeomorphic zones with varying elevation, vegetation, and sediment properties in Wax Lake Delta (Louisiana, USA) in June 2018. Regression analyses indicate that normalized difference vegetation index is a useful predictor of summertime nitrate removal. Mass transfer velocity were approximately three times greater on a vegetated submerged levee (13 mm hr−1), where normalized difference vegetation index was greatest, compared to other locations (4.6 mm hr−1). Two methods were developed to upscale nitrate removal across the delta. The flooded‐delta method integrates spatially explicit potential removal rates across submerged portions of the delta and suggests that intermediate elevations on the delta—including submerged levees—are responsible for 70% of potential nitrate removal despite covering only 33% of the flooded area. The channel network method treats the delta as a network of river channels and suggests that although secondary channels are more efficient than primary channels at removing received nitrate, primary channels collectively contribute more to overall removal because they convey more of the total nitrate load. The two upscaling methods predict similar rates of nitrate removal, equivalent to less than 4% of nitrate entering the delta. To protect coastal waters against high nitrate loads, management policies should aim to reduce upstream nutrient loads.

     
    more » « less
  5. Abstract

    Hyporheic exchange is a crucial control of the type and rates of streambed biogeochemical processes, including metabolism, respiration, nutrient turnover, and the transformation of pollutants. Previous work has shown that increasing discharge during an individual peak flow event strengthens biogeochemical turnover by enhancing the exchange of water and dissolved solutes. However, due to the nonsteady nature of the exchange process, successive peak flow events do not exhibit proportional variations in residence time and turnover, and in some cases, can reduce the hyporheic zones' biogeochemical potential. Here, we used a process‐based model to explore the role of successive peak flow events on the flow and transport characteristics of bedform‐induced hyporheic exchange. We conducted a systematic analysis of the impacts of the events' magnitude, duration, and time between peaks in the hyporheic zone's fluxes, penetration, and residence times. The relative contribution of each event to the transport of solutes across the sediment‐water interface was inferred from transport simulations of a conservative solute. In addition to temporal variations in the hyporheic flow field, our results demonstrate that the separation between two events determines the temporal evolution of residence time and that event time lags longer than the memory of the system result in successive events that can be treated independently. This study highlights the importance of discharge variability in the dynamics of hyporheic exchange and its potential implications for biogeochemical transformations and fate of contaminants along river corridors.

     
    more » « less