The synthesis and characterization of the15N‐labeled analogue of the mitochondrial calcium uptake inhibitor [Cl(NH3)4Ru(μ‐N)Ru(NH3)4Cl]3+(Ru265) bearing [15N]NH3ligands is reported. Using [1H,15N] HSQC NMR spectroscopy, the rate constants for the axial chlorido ligand aquation of [15N]Ru265 in pH 7.4 buffer at 25 °C were found to be
As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well‐studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described.
more » « less- Award ID(s):
- 2102116
- PAR ID:
- 10447036
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 28
- Issue:
- 8
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract k 1=(3.43±0.03)×10−4 s−1andk 2=(4.03±0.09)×10−3 s−1. The reactivity of [15N]Ru265 towards biologically relevant small molecules was also assessed via this method, revealing that this complex can form coordination bonds to anionic oxygen and sulfur donors. Time‐based studies on these ligand‐binding reactions reveal this process to be slow relative to the time required for the complex to inhibit mitochondrial calcium uptake, suggesting that hydrogen‐bonding interactions, rather than the formation of coordination bonds, may play a more significant role in mediating the inhibitory properties of this complex. -
Abstract With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived from
cis,cis ‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN ‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN 3manner, yielding four‐coordinate complexes with idealizedC 3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions. -
Abstract The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium‐hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen‐bridged germylidynesilane intermediate (H3Si(μ‐H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon‐germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon‐germanium species at the microscopic level exploiting crossed molecular beams.
-
Abstract 3‐Hydroxypiperidinium pentaiodide was synthesized by a facile reaction in concentrated aqueous HI. Its crystal structure comprises 3‐hydroxypiperidinium cations and pentaiodide anions, the latter having geometry of
cis ‐shaped chains composed of I2and I3−building units. The analysis of interatomic distances, Raman spectroscopy data, and results of DFT calculations, including non‐covalent interaction analysis, showed that the title compound exhibits a complex pattern of covalent and non‐covalent interactions. Those include I−I covalent bonds and I⋅⋅⋅I halogen bonds within the I5−anion as well as (N)H⋅⋅⋅I and (O)H⋅⋅⋅I hydrogen bonds and even weaker (C)H⋅⋅⋅I van‐der‐Waals interactions between the cations and anions. -
Abstract Asymmetric catalysis of chemical transformations by chiral small organic molecules has become an important approach in organic synthesis. Attractive noncovalent interactions such as N(O)−H hydrogen‐bonding, π‐stacking, and cation‐π interactions have been exploited as the primary and/or secondary function(s) of the catalysts, but C(
sp 2)−H hydrogen‐bonding interactions have been underutilized in this context. This Minireview showcases selected organocatalysts in which C(sp 2)−H hydrogen‐bonding interactions are invoked in their mechanism of catalysis, examples of which can be inspirational for the development of new catalysts.