skip to main content


This content will become publicly available on October 23, 2024

Title: Organo‐Functionalized Lacunary Double Cubane‐Type Oxometallates: Synthesis, Structure, and Properties of [(M II Cl) 2 (V IV O) 2 {((HOCH 2 CH 2 )(H)N(CH 2 CH 2 O))(HN(CH 2 CH 2 O) 2 )} 2 ] (M=Co, Zn)
Abstract

Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.

 
more » « less
Award ID(s):
1834750
NSF-PAR ID:
10491744
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
John Wiley & Sons, Ltd
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
29
Issue:
59
ISSN:
0947-6539
Page Range / eLocation ID:
e202301389
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant,θ=−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions betweenS=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7=16384 microstates from seven Cr3+centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to beJ1=−21.4 cm−1andJ2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+center and the peripheral Cr3+ions of the dicubane cluster. The best simulation of the experimental data was obtained withJ1=−20.0 cm−1andJ2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ions as compared to the AFM exchange between the central and peripheral Cr3+ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks.

     
    more » « less
  2. Abstract

    Three new polynuclear clusters with the formulae [Mn10O4(OH)(OMe){(py)2C(O)2}2{(py)2C(OMe)(O)}4(MeCO2)6](ClO4)2(1), Na[Mn12O2(OH)3(OMe){(py)2C(O)2}6{(py)2C(OH)(O)}2(MeCO2)2(H2O)10](ClO4)8(2) and [Mn12O4(OH)2{(py)2C(O)2}6{(py)2C(OMe)(O)}(MeCO2)3(NO3)3(H2O)(DMF)2](NO3)2(3) were prepared from the combination of di‐2‐pyridyl ketone, (py)2CO, with the aliphatic diols (1,3‐propanediol (pdH2) or 1,4‐butanediol (1,4‐bdH2)) in Mn carboxylate chemistry. The reported compounds do not include the aliphatic diols employed in this reaction scheme; however, their use is essential for the formation of13. The crystal structures of13are based on multilayer cores which, to our knowledge, are reported for the first time in Mn cluster chemistry. Direct current (dc) magnetic susceptibility studies showed the presence of dominant antiferromagnetic exchange interactions within13. Alternating current (ac) magnetic susceptibility studies revealed the presence of out‐of‐phase signals below 3.0 K for2and3indicating the slow relaxation of the magnetization vector, characteristic of single‐molecule magnets; theUeffvalue of2was found to be 23 K and the preexponential factorτ0~7.6×10−9 s.

     
    more » « less
  3. Five new divalent metal coordination polymers containing either 1,3‐adamantanedicarboxylate (adc) or 1,3‐adamantanediacetate (ada) and pillaring dipyridyl ligands were prepared and structurally characterized by single‐crystal X‐ray diffraction. Using the V‐shaped linker 4,4′‐dipyridylamine (dpa), three new phases were isolated. {[Zn2(ada)2(dpa)2]·4.5H2O}n(1) shows a (4,4) grid topology with embedded octameric water clusters. {[Co(ada)(dpa)(H2O)]·H2O}n(2) also manifests a 2D dimensionality, but with an intriguing novel (4)(12)(4.125) looped topology. {[Cd(adc)(H2O)2]·H2O}n(3) did not incorporate dpa ligands during self‐assembly, but exhibits an uncommon 3‐connected 83etbnetwork topology. [Co(ada)(ebin)]n(4) [ebin = ethanediaminebis(nicotinamide)] possesses a (3,6) triangular net based on {Co2(OCO)2} dimeric units. {[Cd(adc)(ebin)]·2H2O}n(5) also shows dimeric units, although linked into a decorated (4,4) grid topology. Magnetic susceptibility studies of compound4revealed a decrease inχmTproduct upon cooling, ascribed to antiferromagnetic coupling concomitant with single‐ion effects [g= 2.39(2) withD= 40(3) cm–1andJ= –3.55(4) cm–1]. Compounds1and5undergo blue‐violet fluorescence upon ultraviolet irradiation; the zinc derivative1shows potential as a sensor for the solution‐phase detection of nitrobenzene andm‐nitrophenol. Thermal decomposition behavior of the five new phases is also discussed.

     
    more » « less
  4. Abstract

    A density functional theoretical (DFT) study is presented, implicating a1O2oxidation process to reach a dihydrobenzofuran from the reaction of the natural homoallylic alcohol, glycocitrine. Our results predict an interconversion between glycocitrine and aniso‐hydroperoxide intermediate [R(H)O+O] that provides a key path in the chemistry which then follows. Formations of allylic hydroperoxides are unlikely from a1O2‘ene’ reaction. Instead, the dihydrobenzofuran arises by1O2oxidation facilitated by a 16° curvature of the glycocitrine ring imposed by a pyramidalN‐methyl group. This curvature facilitates the formation of theiso‐hydroperoxide, which is analogous to theisospecies CH2I+Iand CHI2+Iformed by UV photolysis of CH2I2and CHI3. Theiso‐hydroperoxide is also structurally reminiscent of carbonyl oxides (R2C=O+O) formed in the reaction of carbenes and oxygen. Our DFT results point to intermolecular process, in which theiso‐hydroperoxide's fate relates to O‐transfer and H2O dehydration reactions for new insight into the biosynthesis of dihydrobenzofuran natural products.

     
    more » « less
  5. Abstract

    Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O[Bi≡B−B≡O]in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2Oand ReB2Oand investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2Ohas a closed‐shell bent structure (Cs,1A′) with BOcoordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2Ois linear (C∞v,3Σ) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.

     
    more » « less