skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lagrangian Studies of Marine Production: A Multimethod Assessment of Productivity Relationships in the California Current Ecosystem Upwelling Region
Abstract A multimethod process‐oriented investigation of diverse productivity measures in the California Current Ecosystem (CCE) Long‐Term Ecological Research study region, a complex physical environment, is presented. Seven multiday deployments covering a transition region from high to low productivity were conducted over two field expeditions (spring 2016 and summer 2017). Employing a Lagrangian study design, water parcels were followed over several days, comparing 24‐h in situ measurements (14C and15NO3‐uptake, dilution estimates of phytoplankton growth, and microzooplankton grazing) with high‐resolution productivity measurements by fast repetition rate fluorometry (FRRF) and equilibrium inlet mass spectrometry (EIMS), and integrated carbon export measuremnts using sediment traps. Results show the importance of accounting for temporal and fine spatial scale variability when estimating ecosystem production. FRRF and EIMS measurements resolved diel patterns in gross primary and net community production. Diel productivity changes agreed well with comparably more traditional measurements. While differences in productivity metrics calculated over different time intervals were considerable, as those methods rely on different base assumptions, the data can be used to explain ecosystem processes which would otherwise have gone unnoticed. The processes resolved from this method comparison further understanding of temporal and spatial coupling and decoupling of surface productivity and potential carbon burial in a gradient from coastal to offshore ecosystems.  more » « less
Award ID(s):
1637632
PAR ID:
10447040
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
6
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The net ecosystem productivity (NEP) of two seagrassmeadows within one of the largest seagrass ecosystems in the world, FloridaBay, was assessed using direct measurements over consecutive diel cyclesduring a short study in the fall of 2018. We report significant differencesbetween NEP determined by dissolved inorganic carbon (NEPDIC) and bydissolved oxygen (NEPDO), likely driven by differences in air–water gasexchange and contrasting responses to variations in light intensity. We alsoacknowledge the impact of advective exchange on metabolic calculations ofNEP and net ecosystem calcification (NEC) using the “open-water” approachand attempt to quantify this effect. In this first direct determination ofNEPDIC in seagrass, we found that both seagrass ecosystems were netheterotrophic, on average, despite large differences in seagrass netabove-ground primary productivity. NEC was also negative, indicating thatboth sites were net dissolving carbonate minerals. We suggest that acombination of carbonate dissolution and respiration in sediments exceededseagrass primary production and calcification, supporting our negative NEPand NEC measurements. However, given the limited spatial (two sites) andtemporal (8 d) extent of this study, our results may not berepresentative of Florida Bay as a whole and may be season-specific. Theresults of this study highlight the need for better temporal resolution,accurate carbonate chemistry accounting, and an improved understanding ofphysical mixing processes in future seagrass metabolism studies. 
    more » « less
  2. Abstract River metabolism and, thus, carbon cycling are governed by gross primary production and ecosystem respiration. Traditionally river metabolism is derived from diel dissolved oxygen concentrations, which cannot resolve diel changes in ecosystem respiration. Here, we compare river metabolism derived from oxygen concentrations with estimates from stable oxygen isotope signatures (δ18O2) from 14 sites in rivers across three biomes using Bayesian inverse modeling. We find isotopically derived ecosystem respiration was greater in the day than night for all rivers (maximum change of 113 g O2 m−2 d−1, minimum of 1 g O2 m−2 d−1). Temperature (20 °C) normalized rates of ecosystem respiration and gross primary production were 1.1 to 87 and 1.5 to 22-fold higher when derived from oxygen isotope data compared to concentration data. Through accounting for diel variation in ecosystem respiration, our isotopically-derived rates suggest that ecosystem respiration and microbial carbon cycling in rivers is more rapid than predicted by traditional methods. 
    more » « less
  3. Abstract Seagrass meadows are valued for their ecosystem services, including their role in mitigating anthropogenic CO2emissions through ‘blue carbon’ sequestration and storage. This study quantifies the dynamics of whole ecosystem metabolism on daily to interannual timescales for an eelgrass (Zostera marina) meadow using in situ benthic O2flux measurements by aquatic eddy covariance over a period of 11 yr. The measurements were part of the Virginia Coast Reserve Long‐Term Ecological Research study, and covered a relatively stable period of seagrass ecosystem metabolism 6–13 yr after restoration by seeding (2007–2014), a die‐off event likely related to persistently high temperatures during peak growing season in 2015, and a partial recovery from 2016 to 2018. This unique sequence provides an unprecedented opportunity to study seagrass resilience to temperature stress. With this extensive data set covering 115 full diel cycles, we constructed an average annual oxygen budget that indicated the meadow was in metabolic balance when averaged over the entire period, with gross primary production and respiration equal to 95 and −94 mmol O2m−2d−1, respectively. On an interannual scale, there was a shift in trophic status from balanced to net heterotrophy during the die‐off event in 2015, then to net autotrophy as the meadow recovered. The highly dynamic and variable nature of seagrass metabolism captured by our aquatic eddy covariance data emphasizes the importance of using frequent measurements throughout the year to correctly estimate trophic status of seagrass meadows. 
    more » « less
  4. Abstract Diel variations in oxygen concentration have been extensively used to estimate rates of photosynthesis and respiration in productive freshwater and marine ecosystems. Recent improvements in optical oxygen sensors now enable us to use the same approach to estimate metabolic rates in the oligotrophic waters that cover most of the global ocean and for measurements collected by autonomous underwater vehicles. By building on previous methods, we propose a procedure to estimate photosynthesis and respiration from vertically resolved diel measurements of oxygen concentration. This procedure involves isolating the oxygen variation due to biological processes from the variation due to physical processes, and calculating metabolic rates from biogenic oxygen changes using linear least squares analysis. We tested our method on underwater glider observations from the surface layer of the North Pacific Subtropical Gyre where we estimated rates of gross oxygen production and community respiration both averaging 1.0 mmol O2m−3d−1, consistent with previous estimates from the same environment. Method uncertainty was computed as the standard deviation of the fitted parameters and averaged 0.6 and 0.5 mmol O2m−3d−1for oxygen production and respiration, respectively. The variability of metabolic rates was larger than this uncertainty and we were able to discern covariation in the biological production and consumption of oxygen. The proposed method resolved variability on time scales of approximately 1 week. This resolution can be improved in several ways including by measuring turbulent mixing, increasing the number of measurements in the surface ocean, and adopting a Lagrangian approach during data collection. 
    more » « less
  5. Abstract Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget (NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO2derived from eddy covariance (EC) for aSpartina alterniflorasalt marsh. We found interannual NEE could vary up to 3‐fold and range from −58.5 ± 11.3 to −222.9 ± 12.4 g C m−2 year−1in 2016 and 2020, respectively. Further, we found that atmospheric CO2fluxes were spatially dependent and varied across short distances. High biomass regions along tidal creek and estuary edges had up to 2‐fold higher annual NEE than lower biomass marsh interiors. In addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded to environmental drivers differently. Low elevation edges (with taller canopies) had a higher correlation with river discharge (R2 = 0.61), the main freshwater input into the system, while marsh interiors (with short canopies) were better correlated with in situ precipitation (R2 = 0.53). Lastly, we extrapolated interannual NEE to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter ecosystem productivity. 
    more » « less