skip to main content


Title: Long‐term trends and resilience of seagrass metabolism: A decadal aquatic eddy covariance study
Abstract

Seagrass meadows are valued for their ecosystem services, including their role in mitigating anthropogenic CO2emissions through ‘blue carbon’ sequestration and storage. This study quantifies the dynamics of whole ecosystem metabolism on daily to interannual timescales for an eelgrass (Zostera marina) meadow using in situ benthic O2flux measurements by aquatic eddy covariance over a period of 11 yr. The measurements were part of the Virginia Coast Reserve Long‐Term Ecological Research study, and covered a relatively stable period of seagrass ecosystem metabolism 6–13 yr after restoration by seeding (2007–2014), a die‐off event likely related to persistently high temperatures during peak growing season in 2015, and a partial recovery from 2016 to 2018. This unique sequence provides an unprecedented opportunity to study seagrass resilience to temperature stress. With this extensive data set covering 115 full diel cycles, we constructed an average annual oxygen budget that indicated the meadow was in metabolic balance when averaged over the entire period, with gross primary production and respiration equal to 95 and −94 mmol O2m−2d−1, respectively. On an interannual scale, there was a shift in trophic status from balanced to net heterotrophy during the die‐off event in 2015, then to net autotrophy as the meadow recovered. The highly dynamic and variable nature of seagrass metabolism captured by our aquatic eddy covariance data emphasizes the importance of using frequent measurements throughout the year to correctly estimate trophic status of seagrass meadows.

 
more » « less
Award ID(s):
1824144 1851424 1832221
NSF-PAR ID:
10373464
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
65
Issue:
7
ISSN:
0024-3590
Page Range / eLocation ID:
p. 1423-1438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Seagrass meadows play an important role in “blue carbon” sequestration and storage, but their dynamic metabolism is not fully understood. In a denseZostera marinameadow, we measured benthic O2fluxes by aquatic eddy covariance, water column concentrations of O2, and partial pressures of CO2(pCO2) over 21 full days during peak growing season in April and June. Seagrass metabolism, derived from the O2flux, varied markedly between the 2 months as biomass accumulated and water temperature increased from 16°C to 28°C, triggering a twofold increase in respiration and a trophic shift of the seagrass meadow from being a carbon sink to a carbon source. Seagrass metabolism was the major driver of diurnal fluctuations in water column O2concentration and pCO2, ranging from 173 to 377 μmol L−1and 193 to 859 ppmv, respectively. This 4.5‐fold variation in pCO2was observed despite buffering by the carbonate system. Hysteresis in diurnal water column pCO2vs. O2concentration was attributed to storage of O2and CO2in seagrass tissue, air–water exchange of O2and CO2, and CO2storage in surface sediment. There was a ~ 1:1 mol‐to‐mol stoichiometric relationship between diurnal fluctuations in concentrations of O2and dissolved inorganic carbon. Our measurements showed no stimulation of photosynthesis at high CO2and low O2concentrations, even though CO2reached levels used in IPCC ocean acidification scenarios. This field study does not support the notion that seagrass meadows may be “winners” in future oceans with elevated CO2concentrations and more frequent temperature extremes.

     
    more » « less
  2. Abstract

    The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown algaFucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated ~ 40 m2of the seabed surface area and documented considerable oxygen production by the canopy year‐round. High net oxygen production rates of up to 35 ± 9 mmol m−2h−1were measured under peak irradiance of ~ 1200 μmol photosynthetically active radiation (PAR) m−2s−1in summer. However, high rates > 15 mmol m−2h−1were also measured in late winter (March) under low light intensities < 250 μmol PAR m−2s−1and water temperatures of ~ 1°C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces ofF. vesiculosus.Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two‐thirds of the year, and annual canopyNEMamounted to 25 mol O2m−2yr−1, approximately six‐fold higher than net phytoplankton production. Canopy C export was ~ 0.3 kg C m−2yr−1, comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.

     
    more » « less
  3. Abstract

    Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.

     
    more » « less
  4. Abstract

    Subtropical seagrass meadows play a major role in the coastal carbon cycle, but the nature of air–water CO2exchanges over these ecosystems is still poorly understood. The complex physical forcing of air–water exchange in coastal waters challenges our ability to quantify bulk exchanges of CO2and water (evaporation), emphasizing the need for direct measurements. We describe the first direct measurements of evaporation and CO2flux over a calcifying seagrass meadow near Bob Allen Keys, Florida. Over the 78‐d study, CO2emissions were 36% greater during the day than at night, and the site was a net CO2source to the atmosphere of 0.27 ± 0.17 μmol m−2s−1(x̅ ± standard deviation). A quarter (23%) of the diurnal variability in CO2flux was caused by the effect of changing water temperature on gas solubility. Furthermore, evaporation rates were ~ 10 times greater than precipitation, causing a 14% increase in salinity, a potential precursor of seagrass die‐offs. Evaporation rates were not correlated with solar radiation, but instead with air–water temperature gradient and wind shear. We also confirm the role of convective forcing on night‐time enhancement and day‐time suppression of gas transfer. At this site, temperature trends are regulated by solar heating, combined with shallow water depth and relatively consistent air temperature. Our findings indicate that evaporation and air–water CO2exchange over shallow, tropical, and subtropical seagrass ecosystems may be fundamentally different than in submerged vegetated environments elsewhere, in part due to the complex physical forcing of coastal air–sea gas transfer.

     
    more » « less
  5. Abstract

    Seagrass meadows perform an important ecological function as filters for incoming nutrients from surrounding watersheds, especially nitrogen (N). By enhancing N removal processes, including N burial in sediments and denitrification, seagrass meadows improve water quality. With accelerating losses of seagrass meadows worldwide, seagrass restoration plays a key role in reestablishing these coastal ecosystem functions. However, few measurements exist of N burial rates in temperate seagrass meadows and none have been published for restored meadows. In this study, we measured N burial rates in a large (6.9 km2) restored eelgrass (Zostera marina) meadow and compared N removal through burial to previous measurements of removal via denitrification. We also compared N removal to inputs from external loading and fixation and to N assimilation in seagrass biomass. We found that, in this meadow, burial was the dominant process of N removal; the burial rate of 3.52 g N m−2yr−1was comparable to rates in natural meadows within 10 yr after seeding and was more than 20× the rate in adjacent bare sediments (0.17 g N m−2yr−1). We also found that the high rates of N assimilation (2.62 g N m−2yr−1) created a substantial though temporary sink for nitrogen during the growing season. Our results highlight how seagrass meadows mediate N cycling through high rates of burial, which to date has been understudied in the literature. The successful return of the N filter function after restoration, shown here for the first time, can motivate continued efforts for seagrass restoration and conservation.

     
    more » « less