skip to main content

Title: Energetic formulation of large‐deformation poroelasticity

The modeling of coupled fluid transport and deformation in a porous medium is essential to predict the various geomechanical process such as CO2 sequestration, hydraulic fracturing, and so on. Current applications of interest, for instance, that include fracturing or damage of the solid phase, require a nonlinear description of the large deformations that can occur. This paper presents a variational energy‐based continuum mechanics framework to model large‐deformation poroelasticity. The approach begins from the total free energy density that is additively composed of the free energy of the components. A variational procedure then provides the balance of momentum, fluid transport balance, and pressure relations. A numerical approach based on finite elements is applied to analyze the behavior of saturated and unsaturated porous media using a nonlinear constitutive model for the solid skeleton. Examples studied include the Terzaghi and Mandel problems; a gas–liquid phase‐changing fluid; multiple immiscible gases; and unsaturated systems where we model injection of fluid into soil. The proposed variational approach can potentially have advantages for numerical methods as well as for combining with data‐driven models in a Bayesian framework.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical and Analytical Methods in Geomechanics
Page Range / eLocation ID:
p. 910-932
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dynamic shearing banding and fracturing in unsaturated porous media are significant problems in engineering and science. This article proposes a multiphase micro‐periporomechanics (PPM) paradigm for modeling dynamic shear banding and fracturing in unsaturated porous media. Periporomechanics (PPM) is a nonlocal reformulation of classical poromechanics to model continuous and discontinuous deformation/fracture and fluid flow in porous media through a single framework. In PPM, a multiphase porous material is postulated as a collection of a finite number of mixed material points. The length scale in PPM that dictates the nonlocal interaction between material points is a mathematical object that lacks a direct physical meaning. As a novelty, in the coupled PPM, a microstructure‐based material length scale is incorporated by considering micro‐rotations of the solid skeleton following the Cosserat continuum theory for solids. As a new contribution, we reformulate the second‐order work for detecting material instability and the energy‐based crack criterion and J‐integral for modeling fracturing in the PPM paradigm. The stabilized Cosserat PPM correspondence principle that mitigates the multiphase zero‐energy mode instability is augmented to include unsaturated fluid flow. We have numerically implemented the novel PPM paradigm through a dual‐way fractional‐step algorithm in time and a hybrid Lagrangian–Eulerian meshfree method in space. Numerical examples are presented to demonstrate the robustness and efficacy of the proposed PPM paradigm for modeling shear banding and fracturing in unsaturated porous media.

    more » « less
  2. Abstract

    We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems.

    more » « less
  3. Abstract

    In this article we formulate a stable computational nonlocal poromechanics model for dynamic analysis of saturated porous media. As a novelty, the stabilization formulation eliminates zero‐energy modes associated with the original multiphase correspondence constitutive models in the coupled nonlocal poromechanics model. The two‐phase stabilization scheme is formulated based on an energy method that incorporates inhomogeneous solid deformation and fluid flow. In this method, the nonlocal formulations of skeleton strain energy and fluid flow dissipation energy equate to their local formulations. The stable coupled nonlocal poromechanics model is solved for dynamic analysis by an implicit time integration scheme. As a new contribution, we validate the coupled stabilization formulation by comparing numerical results with analytical and finite element solutions for one‐dimensional and two‐dimensional dynamic problems in saturated porous media. Numerical examples of dynamic strain localization in saturated porous media are presented to demonstrate the efficacy of the stable coupled poromechanics framework for localized failure under dynamic loads.

    more » « less
  4. Abstract

    Many geo‐engineering applications, for example, enhanced geothermal systems, rely on hydraulic fracturing to enhance the permeability of natural formations and allow for sufficient fluid circulation. Over the past few decades, the phase‐field method has grown in popularity as a valid approach to modeling hydraulic fracturing because of the ease of handling complex fracture propagation geometries. However, existing phase‐field methods cannot appropriately capture nucleation of hydraulic fractures because their formulations are solely energy‐based and do not explicitly take into account the strength of the material. Thus, in this work, we propose a novel phase‐field formulation for hydraulic fracturing with the main goal of modeling fracture nucleation in porous media, for example, rocks. Built on the variational formulation of previous phase‐field methods, the proposed model incorporates the material strength envelope for hydraulic fracture nucleation through two important steps: (i) an external driving force term, included in the damage evolution equation, that accounts for the material strength; (ii) a properly designed damage function that defines the fluid pressure contribution on the crack driving force. The comparison of numerical results for two‐dimensional test cases with existing analytical solutions demonstrates that the proposed phase‐field model can accurately model both nucleation and propagation of hydraulic fractures. Additionally, we present the simulation of hydraulic fracturing in a three‐dimensional domain with various stress conditions to demonstrate the applicability of the method to realistic scenarios.

    more » « less
  5. The mechanical behavior of unsaturated porous media under non-isothermal conditions plays a vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and geothermal energy harvest and foundations). Temperature increase can trigger localized failure and cracking in unsaturated porous media. This article investigates the shear banding and cracking in unsaturated porous media under non-isothermal conditions through a thermo–hydro–mechanical (THM) periporomechanics (PPM) paradigm. PPM is a nonlocal formulation of classical poromechanics using integral equations, which is robust in simulating continuous and discontinuous deformation in porous media. As a new contribution, we formulate a nonlocal THM constitutive model for unsaturated porous media in the PPM paradigm in this study. The THM meshfree paradigm is implemented through an explicit Lagrangian meshfree algorithm. The return mapping algorithm is used to implement the nonlocal THM constitutive model numerically. Numerical examples are presented to assess the capability of the proposed THM mesh-free paradigm for modeling shear banding and cracking in unsaturated porous media under non-isothermal conditions. The numerical results are examined to study the effect of temperature variations on the formation of shear banding and cracking in unsaturated porous media.

    more » « less