skip to main content


Title: Nonequilibrium molecular dynamics (NEMD) modeling of nanoscale hydrodynamics of clay‐water system at elevated temperature
Abstract

The engineering problems involving clay under non‐isothermal conditions (e.g., geothermal energy harvest, landfill cover system, and nuclear waste disposal) are multiscale and multiphysics by nature. The nanoscale hydrodynamics of clay at elevated temperature is essential in developing a physics‐based multiscale model for clay under non‐isothermal conditions. The nonequilibrium molecular dynamics (NEMD) is a useful tool to study the nanoscale hydrodyndamics of clay. This article presents an NEMD modeling of hydrodynamics of clay nanopores at elevated temperatures. Water flow confined in pyrophyllite and montmorillonite clay nanopores is investigated. The nonequilibrium state is maintained by uniformly exerting an external force on each water molecule. The NEMD simulations have provided a molecular‐scale perspective of temperature effect on clay‐water density, water flow velocity, shear viscosity, clay‐water slip length, hydraulic conductivity, and clay‐water friction coefficient. The numerical results have shown a strong temperature dependence of fluid flow velocity, shear viscosity, clay‐water slip length, and hydraulic conductivity at the nanoscale. We have validated the applicability of cubic law in determining hydraulic conductivity at the nanopore scale at elevated temperatures. It is found from our numerical results that slip clay‐water boundary condition is an essential factor in properly determining nanoscale fluid flow velocity. By numerical examples, we also study the impact of nanopore size and clay layer thickness on the hydrodynamics of the clay‐water system.

 
more » « less
Award ID(s):
1944009 1659932
NSF-PAR ID:
10447141
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical and Analytical Methods in Geomechanics
Volume:
46
Issue:
5
ISSN:
0363-9061
Page Range / eLocation ID:
p. 889-909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study hydrodynamics, heat transfer, and entropy generation in pressure-driven microchannel flow of a power-law fluid. Specifically, we address the effect of asymmetry in the slip boundary condition at the channel walls. Constant, uniform but unequal heat fluxes are imposed at the walls in this thermally developed flow. The effect of asymmetric slip on the velocity profile, on the wall shear stress, on the temperature distribution, on the Bejan number profiles, and on the average entropy generation and the Nusselt number are established through the numerical evaluation of exact analytical expressions derived. Specifically, due to asymmetric slip, the fluid momentum flux and thermal energy flux are enhanced along the wall with larger slip, which, in turn, shifts the location of the velocity's maximum to an off-center location closer to the said wall. Asymmetric slip is also shown to redistribute the peaks and plateaus of the Bejan number profile across the microchannel, showing a sharp transition between entropy generation due to heat transfer and due to fluid flow at an off-center-line location. In the presence of asymmetric slip, the difference in the imposed heat fluxes leads to starkly different Bejan number profiles depending on which wall is hotter, and whether the fluid is shear-thinning or shear-thickening. Overall, slip is shown to promote uniformity in both the velocity field and the temperature field, thereby reducing irreversibility in this flow. 
    more » « less
  2. null (Ed.)
    This paper focuses on the thermo-hydro-mechanical behavior of soft clay surrounding a prefabricated thermal drain. A prefabricated thermal drain combines features of a conventional prefabricated vertical drain (PVD) and a closed-loop geothermal heat exchanger by placing plastic tubing within the core of the PVD through which heated fluid can be circulated. The prefabricated thermal drain can be used to increase the temperature of the surrounding soft clay, which will generate excess pore water pressures due to differential thermal expansion of the pore fluid and clay particles. As these excess pore water pressures drain, the soft clay will experience volumetric contraction. The elevated temperature leads to an increase in the hydraulic conductivity and the volumetric contraction leads to an increase in thermal conductivity, making this a highly coupled process. Although thermal drains have been tested in proof of concept field experiments, there are still several variables that need to be better understood. This paper presents numerical simulations of the coupled heat transfer, water flow, and volume change in the soft soil surrounding a prefabricated thermal drain that were validated using the results from large-scale laboratory experiments. Numerical simulations were found to agree well with the experimental data. A further analysis on the performance of the thermal PVD indicates an increase in surface settlement with an increase in drain temperature and a significant reduction in the surcharge required when using a thermal PVD. 
    more » « less
  3. Summary

    The mechanical and hydraulic properties of unsaturated clay under nonisothermal conditions have practical implications in geotechnical engineering applications such as geothermal energy harvest, landfill cover design, and nuclear waste disposal facilities. The water menisci among clay particles impact the mechanical and hydraulic properties of unsaturated clay. Molecular dynamics (MD) modeling has been proven to be an effective method in investigating clay structures and their hydromechanical behavior at the atomic scale. In this study, we examine the impact of temperature increase on the capillary force and capillary pressure of the partially saturated clay‐water system through high‐performance computing. The water meniscus formed between two parallel clay particles is studied via a full‐scale MD modeling at different elevated temperatures. The numerical results have shown that the temperature increase impacts the capillary force, capillary pressure, and contact angle at the atomic scale. The capillary force on the clay particle obtained from MD simulations is also compared with the results from the macroscopic theory. The full‐scale MD simulation of the partially saturated clay‐water system can not only provide a fundamental understanding of the impact of temperature on the interface physics of such system at the atomic scale, but also has practical implication in formulating physics‐based multiscale models for unsaturated soils by providing interface physical properties of such materials directly through high‐performance computing.

     
    more » « less
  4. Nicks, J. and (Ed.)
    This paper focuses on the behavior of prefabricated thermal drains used to improve saturated clay layers using heating. A prefabricated thermal drain can be formed by integrating a closed-loop geothermal heat exchanger within a conventional prefabricated vertical drain (PVD). Prefabricated thermal drains can be installed in a similar way to a PVD but operate by circulating a heated fluid through the heat exchanger tubing to induce an increase in temperature of the soft clay. This increase in temperature will lead to thermal consolidation, which can be accelerated by drainage through the PVD. Although thermal drains have been tested in proof of concept field experiments, there are still several variables that need to be better understood. This paper presents numerical simulations of the coupled heat transfer, water flow, and volume change in layers of kaolinite, illite and smectite clays within a large-scale oedometer with a prefabricated thermal drain embedded at the center. Thermally induced excess pore water pressures and a slight initial expansion was observed for clay layers with lower hydraulic conductivity. However, the overall volume change resulted in contraction where the rate as well as the magnitude of settlement was greater for a thermal PVD compared to a conventional PVD. A further analysis of kaolinite layers with different initial porosities indicated that the increase in the magnitude of settlement observed when using a thermal PVD was independent of the hydraulic conductivity of the clay whereas the increase in the rate of settlement was more pronounced for clays with lower hydraulic conductivity. 
    more » « less
  5. Direct Numerical Simulation (DNS) of compressible spatially-developing turbulent boundary layers (SDTBL) is performed at a Mach number of 2.5 and low/high Reynolds numbers over isothermal Zero-Pressure Gradient (ZPG) flat plates. Turbulent inflow information is generated via a dynamic rescaling-recycling approach (J. Fluid Mech., 670, pp. 581-605, 2011), which avoids the use of empirical correlations in the computation of inlet turbulent scales. The range of the low Reynolds number case is approximately 400-800, based on the momentum thickness, freestream velocity and wall viscosity. DNS at higher Reynolds numbers (~3,000, about four-fold larger) is also carried out with the purpose of analyzing the effect of Reynolds number on the transport phenomena in the supersonic regime. Additionally, low/high order flow statistics are compared with DNS of an incompressible isothermal ZPG boundary layer at similar low Reynolds numbers and the temperature regarded as a passive scalar. Peaks of turbulence intensities move closer to the wall as the Reynolds number increases in the supersonic flat plate. Furthermore, Reynolds shear stresses depict a much larger "plateau" (constant shear layer) at the highest Reynolds number considered in present study. 
    more » « less