To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
more »
« less
A Comparison of Classification Techniques to Predict Brain-Computer Interfaces Accuracy Using Classifier-Based Latency Estimation
P300-based Brain-Computer Interface (BCI) performance is vulnerable to latency jitter. To investigate the role of latency jitter on BCI system performance, we proposed the classifier-based latency estimation (CBLE) method. In our previous study, CBLE was based on least-squares (LS) and stepwise linear discriminant analysis (SWLDA) classifiers. Here, we aim to extend the CBLE method using sparse autoencoders (SAE) to compare the SAE-based CBLE method with LS- and SWLDA-based CBLE. The newly-developed SAE-based CBLE and previously used methods are also applied to a newly-collected dataset to reduce the possibility of spurious correlations. Our results showed a significant (p<0.001) negative correlation between BCI accuracy and estimated latency jitter. Furthermore, we also examined the effect of the number of electrodes on each classification technique. Our results showed that on the whole, CBLE worked regardless of the classification method and electrode count; by contrast the effect of the number of electrodes on BCI performance was classifier dependent.
more »
« less
- Award ID(s):
- 1910526
- PAR ID:
- 10447232
- Date Published:
- Journal Name:
- Brain Sciences
- Volume:
- 10
- Issue:
- 10
- ISSN:
- 2076-3425
- Page Range / eLocation ID:
- 734
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Objective.Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and hand) motor cortex.Approach.We recruited a clinical trial participant with amyotrophic lateral sclerosis and implanted intracortical microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a speech BCI in a prior study. We developed a cursor BCI driven by the participant’s vPCG neural activity, and evaluated performance on a series of target selection tasks.Main results.The reported vPCG cursor BCI enabled rapidly-calibrating (40 s), accurate (2.90 bits per second) cursor control and click. The participant also used the BCI to control his own personal computer independently.Significance.These results suggest that placing electrodes in vPCG to optimize for speech decoding may also be a viable strategy for building a multi-modal BCI which enables both speech-based communication and computer control via cursor and click. (BrainGate2 ClinicalTrials.gov ID NCT00912041).more » « less
-
Brain-computer interface (BCI) systems are proposed as a means of communication for locked-in patients. One common BCI paradigm is motor imagery in which the user controls a BCI by imagining movements of different body parts. It is known that imagining different body parts results in event-related desynchronization (ERD) in various frequency bands. Existing methods such as common spatial patterns (CSP) and its refinement filterbank common spatial patterns (FB-CSP) aim at finding features that are informative for classification of the motor imagery class. Our proposed method is a temporally adaptive common spatial patterns implementation of the commonly used filter-bank common spatial patterns method using convolutional neural networks; hence it is called TA-CSPNN. With this method we aim to: (1) make the feature extraction and classification end-to-end, (2) base it on the way CSP/FBCSP extracts relevant features, and finally, (3) reduce the number of trainable parameters compared to existing deep learning methods to improve generalizability in noisy data such as EEG. More importantly, we show that this reduction in parameters does not affect performance and in fact the trained network generalizes better for data from some participants. We show our results on two datasets, one publicly available from BCI Competition IV, dataset 2a and another in-house motor imagery dataset.more » « less
-
A visual stimulator plays an important role in a steady-state visual evoked potential (SSVEP)-based braincomputer interface (BCI). In conventional BCI studies, SSVEPs have been elicited by either a single stimulus whose flickering frequency varies across trials or multiple stimuli flickering at different frequencies simultaneously. It has been implicitly assumed that the SSVEPs generated by the single- and multiple-target stimulation methods are comparable. However, no study has directly compared their efficacy in eliciting SSVEPs. This study, therefore, performed a quantitative comparison of signal-to-noise ratio (SNR) and classification accuracy using 4-class SSVEPs generated by these two methods. The classification accuracy was estimated by three commonly-used target identification algorithms including calibration-free canonical correlation analysis (CCA)-based method and template-based methods with CCA- and task-related component analysis (TRCA)-based spatial filters. The results showed that the single-target stimulation method led to significantly higher SNR and classification accuracy than its multi-target counterpart.more » « less
-
Objective. Brain-computer interface (BCI) systems read and interpret brain activity directly from the brain. They can provide a means of communication or locomotion for patients suffering from neurodegenerative diseases or stroke. However, non-stationarity of brain activity limits the reliable transfer of the algorithms that were trained during a calibration session to real-time BCI control. One source of non-stationarity is the user's brain response to the BCI output (feedback), for instance, whether the BCI feedback is perceived as an error by the user or not. By taking such sources of non-stationarity into account, the reliability of the BCI can be improved. Approach. In this work, we demonstrate a real-time implementation of a hybrid motor imagery BCI combining the information from the motor imagery signal and the error-related brain activity simultaneously so as to gain benefit from both sources. Main results. We show significantly improved performance in real-time BCI control across 12 participants, compared to a conventional motor imagery BCI. The significant improvement is in terms of classification accuracy, target hit rate, subjective perception of control and information-transfer rate. Moreover, our offline analyses of the recorded EEG data show that the error-related brain activity provides a more reliable source of information than the motor imagery signal. Significance. This work shows for the first time, that the error-related brain activity classifier compared to the motor imagery classifier is more consistent when trained on calibration data and tested during online control, which likely explains why the proposed hybrid BCI allows for a more reliable means of communication or rehabilitation for patients in need.more » « less
An official website of the United States government

