To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
more »
« less
A Comparison of Classification Techniques to Predict Brain-Computer Interfaces Accuracy Using Classifier-Based Latency Estimation
P300-based Brain-Computer Interface (BCI) performance is vulnerable to latency jitter. To investigate the role of latency jitter on BCI system performance, we proposed the classifier-based latency estimation (CBLE) method. In our previous study, CBLE was based on least-squares (LS) and stepwise linear discriminant analysis (SWLDA) classifiers. Here, we aim to extend the CBLE method using sparse autoencoders (SAE) to compare the SAE-based CBLE method with LS- and SWLDA-based CBLE. The newly-developed SAE-based CBLE and previously used methods are also applied to a newly-collected dataset to reduce the possibility of spurious correlations. Our results showed a significant (p<0.001) negative correlation between BCI accuracy and estimated latency jitter. Furthermore, we also examined the effect of the number of electrodes on each classification technique. Our results showed that on the whole, CBLE worked regardless of the classification method and electrode count; by contrast the effect of the number of electrodes on BCI performance was classifier dependent.
more »
« less
- Award ID(s):
- 1910526
- PAR ID:
- 10447232
- Date Published:
- Journal Name:
- Brain Sciences
- Volume:
- 10
- Issue:
- 10
- ISSN:
- 2076-3425
- Page Range / eLocation ID:
- 734
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Objective. Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and hand) motor cortex. Approach. We recruited a clinical trial participant with ALS and implanted intracortical microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a speech BCI in a prior study. We developed a cursor BCI driven by the participant’s vPCG neural activity, and evaluated performance on a series of target selection tasks. Main results. The reported vPCG cursor BCI enabled rapidly-calibrating (40 seconds), accurate (2.90 bits per second) cursor control and click. The participant also used the BCI to control his own personal computer independently. Significance. These results suggest that placing electrodes in vPCG to optimize for speech decoding may also be a viable strategy for building a multi-modal BCI which enables both speech-based communication and computer control via cursor and click. (BrainGate2 ClinicalTrials.gov ID NCT00912041)more » « less
-
Brain-computer interface (BCI) systems are proposed as a means of communication for locked-in patients. One common BCI paradigm is motor imagery in which the user controls a BCI by imagining movements of different body parts. It is known that imagining different body parts results in event-related desynchronization (ERD) in various frequency bands. Existing methods such as common spatial patterns (CSP) and its refinement filterbank common spatial patterns (FB-CSP) aim at finding features that are informative for classification of the motor imagery class. Our proposed method is a temporally adaptive common spatial patterns implementation of the commonly used filter-bank common spatial patterns method using convolutional neural networks; hence it is called TA-CSPNN. With this method we aim to: (1) make the feature extraction and classification end-to-end, (2) base it on the way CSP/FBCSP extracts relevant features, and finally, (3) reduce the number of trainable parameters compared to existing deep learning methods to improve generalizability in noisy data such as EEG. More importantly, we show that this reduction in parameters does not affect performance and in fact the trained network generalizes better for data from some participants. We show our results on two datasets, one publicly available from BCI Competition IV, dataset 2a and another in-house motor imagery dataset.more » « less
-
A visual stimulator plays an important role in a steady-state visual evoked potential (SSVEP)-based braincomputer interface (BCI). In conventional BCI studies, SSVEPs have been elicited by either a single stimulus whose flickering frequency varies across trials or multiple stimuli flickering at different frequencies simultaneously. It has been implicitly assumed that the SSVEPs generated by the single- and multiple-target stimulation methods are comparable. However, no study has directly compared their efficacy in eliciting SSVEPs. This study, therefore, performed a quantitative comparison of signal-to-noise ratio (SNR) and classification accuracy using 4-class SSVEPs generated by these two methods. The classification accuracy was estimated by three commonly-used target identification algorithms including calibration-free canonical correlation analysis (CCA)-based method and template-based methods with CCA- and task-related component analysis (TRCA)-based spatial filters. The results showed that the single-target stimulation method led to significantly higher SNR and classification accuracy than its multi-target counterpart.more » « less
-
Abstract Objective.Non-invasive electroencephalograms (EEG)-based brain–computer interfaces (BCIs) play a crucial role in a diverse range of applications, including motor rehabilitation, assistive and communication technologies, holding potential promise to benefit users across various clinical spectrums. Effective integration of these applications into daily life requires systems that provide stable and reliable BCI control for extended periods. Our prior research introduced the AIRTrode, a self-adhesive (A), injectable (I), and room-temperature (RT) spontaneously-crosslinked hydrogel electrode (AIRTrode). The AIRTrode has shown lower skin-contact impedance and greater stability than dry electrodes and, unlike wet gel electrodes, does not dry out after just a few hours, enhancing its suitability for long-term application. This study aims to demonstrate the efficacy of AIRTrodes in facilitating reliable, stable and long-term online EEG-based BCI operations.Approach.In this study, four healthy participants utilized AIRTrodes in two BCI control tasks–continuous and discrete–across two sessions separated by six hours. Throughout this duration, the AIRTrodes remained attached to the participants’ heads. In the continuous task, participants controlled the BCI through decoding of upper-limb motor imagery (MI). In the discrete task, the control was based on decoding of error-related potentials (ErrPs).Main Results.Using AIRTrodes, participants demonstrated consistently reliable online BCI performance across both sessions and tasks. The physiological signals captured during MI and ErrPs tasks were valid and remained stable over sessions. Lastly, both the BCI performances and physiological signals captured were comparable with those from freshly applied, research-grade wet gel electrodes, the latter requiring inconvenient re-application at the start of the second session.Significance.AIRTrodes show great potential promise for integrating non-invasive BCIs into everyday settings due to their ability to support consistent BCI performances over extended periods. This technology could significantly enhance the usability of BCIs in real-world applications, facilitating continuous, all-day functionality that was previously challenging with existing electrode technologies.more » « less
An official website of the United States government

