Recently, with the advent of the Internet of everything and 5G network, the amount of data generated by various edge scenarios such as autonomous vehicles, smart industry, 4K/8K, virtual reality (VR), augmented reality (AR), etc., has greatly exploded. All these trends significantly brought real-time, hardware dependence, low power consumption, and security requirements to the facilities, and rapidly popularized edge computing. Meanwhile, artificial intelligence (AI) workloads also changed the computing paradigm from cloud services to mobile applications dramatically. Different from wide deployment and sufficient study of AI in the cloud or mobile platforms, AI workload performance and their resource impact on edges have not been well understood yet. There lacks an in-depth analysis and comparison of their advantages, limitations, performance, and resource consumptions in an edge environment. In this paper, we perform a comprehensive study of representative AI workloads on edge platforms. We first conduct a summary of modern edge hardware and popular AI workloads. Then we quantitatively evaluate three categories (i.e., classification, image-to-image, and segmentation) of the most popular and widely used AI applications in realistic edge environments based on Raspberry Pi, Nvidia TX2, etc. We find that interaction between hardware and neural network models incurs non-negligible impact and overhead on AI workloads at edges. Our experiments show that performance variation and difference in resource footprint limit availability of certain types of workloads and their algorithms for edge platforms, and users need to select appropriate workload, model, and algorithm based on requirements and characteristics of edge environments. 
                        more » 
                        « less   
                    
                            
                            Real-Time Physical Threat Detection on Edge Data Using Online Learning
                        
                    
    
            Sensor-powered devices offer safe global connections; cloud scalability and flexibility, and new business value driven by data. The constraints that have historically obstructed major innovations in technology can be addressed by advancements in Artificial Intelligence (AI) and Machine Learning (ML), cloud, quantum computing, and the ubiquitous availability of data. Edge AI (Edge Artificial Intelligence) refers to the deployment of AI applications on the edge device near the data source rather than in a cloud computing environment. Although edge data has been utilized to make inferences in real-time through predictive models, real-time machine learning has not yet been fully adopted. Real-time machine learning utilizes real-time data to learn on the go, which helps in faster and more accurate real-time predictions and eliminates the need to store data eradicating privacy issues. In this article, we present the practical prospect of developing a physical threat detection system using real-time edge data from security cameras/sensors to improve the accuracy, efficiency, reliability, security, and privacy of the real-time inference model. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2039583
- PAR ID:
- 10447286
- Date Published:
- Journal Name:
- IEEE Consumer Electronics Magazine
- ISSN:
- 2162-2248
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Traffic intersections are the most suitable locations for the deployment of computing, communications, and intelligence services for smart cities of the future. The abundance of data to be collected and processed, in combination with privacy and security concerns, motivates the use of the edgecomputing paradigm which aligns well with physical intersections in metropolises. This paper focuses on high-bandwidth, lowlatency applications, and in that context it describes: (i) system design considerations for smart city intersection intelligence nodes; (ii) key technological components including sensors, networking, edge computing, low latency design, and AI-based intelligence; and (iii) applications such as privacy preservation, cloud-connected vehicles, a real-time ”radar-screen”, traffic management, and monitoring of pedestrian behavior during pandemics. The results of the experimental studies performed on the COSMOS testbed located in New York City are illustrated. Future challenges in designing human-centered smart city intersections are summarized.more » « less
- 
            Traffic intersections are the most suitable locations for the deployment of computing, communications, and intelligence services for smart cities of the future. The abundance of data to be collected and processed, in combination with privacy and security concerns, motivates the use of the edgecomputing paradigm which aligns well with physical intersections in metropolises. This paper focuses on high-bandwidth, lowlatency applications, and in that context it describes: (i) system design considerations for smart city intersection intelligence nodes; (ii) key technological components including sensors, networking, edge computing, low latency design, and AI-based intelligence; and (iii) applications such as privacy preservation, cloud-connected vehicles, a real-time ”radar-screen”, traffic management, and monitoring of pedestrian behavior during pandemics. The results of the experimental studies performed on the COSMOS testbed located in New York City are illustrated. Future challenges in designing human-centered smart city intersections are summarized.more » « less
- 
            —Traffic intersections are the most suitable locations for the deployment of computing, communications, and intelligence services for smart cities of the future. The abundance of data to be collected and processed, in combination with privacy and security concerns, motivates the use of the edgecomputing paradigm which aligns well with physical intersections in metropolises. This paper focuses on high-bandwidth, lowlatency applications, and in that context it describes: (i) system design considerations for smart city intersection intelligence nodes; (ii) key technological components including sensors, networking, edge computing, low latency design, and AI-based intelligence; and (iii) applications such as privacy preservation, cloud-connected vehicles, a real-time ”radar-screen”, traffic management, and monitoring of pedestrian behavior during pandemics. The results of the experimental studies performed on the COSMOS testbed located in New York City are illustrated. Future challenges in designing human-centered smart city intersections are summarized.more » « less
- 
            Chen, Guohua; Khan, Faisal (Ed.)Artificial intelligence (AI) and machine learning (ML) are novel techniques to detect hidden patterns in environmental data. Despite their capabilities, these novel technologies have not been seriously used for real-world problems, such as real-time environmental monitoring. This survey established a framework to advance the novel applications of AI and ML techniques such as Tiny Machine Learning (TinyML) in water environments. The survey covered deep learning models and their advantages over classical ML models. The deep learning algorithms are the heart of TinyML models and are of paramount importance for practical uses in water environments. This survey highlighted the capabilities and discussed the possible applications of the TinyML models in water environments. This study indicated that the TinyML models on microcontrollers are useful for a number of cutting-edge problems in water environments, especially for monitoring purposes. The TinyML models on microcontrollers allow for in situ real-time environmental monitoring without transferring data to the cloud. It is concluded that monitoring systems based on TinyML models offer cheap tools to autonomously track pollutants in water and can replace traditional monitoring methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    