skip to main content


Title: Local fluid shear stress operates a molecular switch to drive fetal semilunar valve extension
Abstract Background

While much is known about the genetic regulation of early valvular morphogenesis, mechanisms governing fetal valvular growth and remodeling remain unclear. Hemodynamic forces strongly influence morphogenesis, but it is unknown whether or how they interact with valvulogenic signaling programs. Side‐specific activity of valvulogenic programs motivates the hypothesis that shear stress pattern‐specific endocardial signaling controls the elongation of leaflets.

Results

We determined that extension of the semilunar valve occurs via fibrosa sided endocardial proliferation. Low OSS was necessary and sufficient to induce canonical Wnt/β‐catenin activation in fetal valve endothelium, which in turn drives BMP receptor/ligand expression, and pSmad1/5 activity essential for endocardial proliferation. In contrast, ventricularis endocardial cells expressed active Notch1 but minimal pSmad1/5. Endocardial monolayers exposed to LSS attenuate Wnt signaling in a Notch1 dependent manner.

Conclusions

Low OSS is transduced by endocardial cells into canonical Wnt signaling programs that regulate BMP signaling and endocardial proliferation. In contrast, high LSS induces Notch signaling in endocardial cells, inhibiting Wnt signaling and thereby restricting growth on the ventricular surface. Our results identify a novel mechanically regulated molecular switch, whereby fluid shear stress drives the growth of valve endothelium, orchestrating the extension of the valve in the direction of blood flow.

 
more » « less
NSF-PAR ID:
10447328
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Developmental Dynamics
Volume:
251
Issue:
3
ISSN:
1058-8388
Page Range / eLocation ID:
p. 481-497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clinically serious congenital heart valve defects arise from improper growth and remodeling of endocardial cushions into leaflets. Genetic mutations have been extensively studied but explain less than 20% of cases. Mechanical forces generated by beating hearts drive valve development, but how these forces collectively determine valve growth and remodeling remains incompletely understood. Here, we decouple the influence of those forces on valve size and shape, and study the role of YAP pathway in determining the size and shape. The low oscillatory shear stress promotes YAP nuclear translocation in valvular endothelial cells (VEC), while the high unidirectional shear stress restricts YAP in cytoplasm. The hydrostatic compressive stress activated YAP in valvular interstitial cells (VIC), whereas the tensile stress deactivated YAP. YAP activation by small molecules promoted VIC proliferation and increased valve size. Whereas YAP inhibition enhanced the expression of cell-cell adhesions in VEC and affected valve shape. Finally, left atrial ligation was performed in chick embryonic hearts to manipulate the shear and hydrostatic stress in vivo. The restricted flow in the left ventricle induced a globular and hypoplastic left atrioventricular (AV) valves with an inhibited YAP expression. By contrast, the right AV valves with sustained YAP expression grew and elongated normally. This study establishes a simple yet elegant mechanobiological system by which transduction of local stresses regulates valve growth and remodeling. This system guides leaflets to grow into proper sizes and shapes with the ventricular development, without the need of a genetically prescribed timing mechanism. 
    more » « less
  2. Abstract Background

    Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan.

    Results

    We analyzed published genomes for two representatives of Tardigrada,Hypsibius exemplarisandRamazzottius varieornatus. We identified single orthologs ofWnt4,Wnt5,Wnt9,Wnt11, andWntA, as well as twoWnt16paralogs in both tardigrade genomes. We only found aWnt2ortholog inH. exemplaris. We could not identify orthologs ofWnt1,Wnt6,Wnt7,Wnt8, orWnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog ofarrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog ofarrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes inH. exemplarisduring developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes inH. exemplarisbesides one of theWnt16paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs inH. exemplaris, rather than in broadly overlapping patterns.

    Conclusions

    Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lostWnt1,Wnt6,Wnt7,Wnt8, andWnt10, along witharrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage.

     
    more » « less
  3. Proper heart morphogenesis requires a delicate balance between hemodynamic forces, myocardial activity, morphogen gradients, and epigenetic signaling, all of which are coupled with genetic regulatory networks. Recently both in vivo and in silico studies have tried to better understand hemodynamics at varying stages of veretebrate cardiogenesis. In particular, the intracardial hemodynamics during the onset of trabeculation is notably complex—the inertial and viscous fluid forces are approximately equal at this stage and small perturbations in morphology, scale, and steadiness of the flow can lead to significant changes in bulk flow structures, shear stress distributions, and chemical morphogen gradients. The immersed boundary method was used to numerically simulate fluid flow through simplified two-dimensional and stationary trabeculated ventricles of 72, 80, and 120 h post fertilization wild type zebrafish embryos and ErbB2-inhibited embryos at seven days post fertilization. A 2D idealized trabeculated ventricular model was also used to map the bifurcations in flow structure that occur as a result of the unsteadiness of flow, trabeculae height, and fluid scale ( R e ). Vortex formation occurred in intertrabecular regions for biologically relevant parameter spaces, wherein flow velocities increased. This indicates that trabecular morphology may alter intracardial flow patterns and hence ventricular shear stresses and morphogen gradients. A potential implication of this work is that the onset of vortical (disturbed) flows can upregulate Notch1 expression in endothelial cells in vivo and hence impacts chamber morphogenesis, valvulogenesis, and the formation of the trabeculae themselves. Our results also highlight the sensitivity of cardiac flow patterns to changes in morphology and blood rheology, motivating efforts to obtain spatially and temporally resolved chamber geometries and kinematics as well as the careful measurement of the embryonic blood rheology. The results also suggest that there may be significant changes in shear signalling due to morphological and mechanical variation across individuals and species. 
    more » « less
  4. WNT/β-catenin signaling is crucial to all stages of life. It controls early morphogenetic events in embryos, maintains stem cell niches in adults, and is dysregulated in many types of cancer. Despite its ubiquity, little is known about the dynamics of signal transduction or whether it varies across contexts. Here we probe the dynamics of signaling by monitoring nuclear accumulation of β-catenin, the primary transducer of canonical WNT signals, using quantitative live cell imaging. We show that β-catenin signaling responds adaptively to constant WNT signaling in pluripotent stem cells, and that these dynamics become sustained on differentiation. Varying dynamics were also observed in the response to WNT in commonly used mammalian cell lines. Signal attenuation in pluripotent cells is observed even at saturating doses, where ligand stability does not affect the dynamics. TGFβ superfamily ligands Activin and BMP, which coordinate with WNT signaling to pattern the gastrula, increase the β-catenin response in a manner independent of their ability to induce new WNT ligand production. Our results reveal how variables external to the pathway, including differentiation status and cross-talk with other pathways, dramatically alter WNT/β-catenin dynamics.

     
    more » « less
  5. Background Information

    Wnt/β‐catenin signalling, in the microenvironment of pluripotent stem cells (PSCs), plays a critical role in their differentiation and proliferation. Contradictory reports on the role of Wnt/β‐catenin signalling in PSCs self‐renewal and differentiation, however, render these mechanisms largely unclear.

    Results

    Wnt/β‐catenin signalling pathway in human‐induced pluripotent stem cells (hiPSCs) was activated by inhibiting glycogen synthase kinase 3 (GSK3), driving the cells into a mesodermal/mesenchymal state, exhibiting proliferative, invasive and anchorage‐independent growth properties, where over 70% of cell population became CD 44 (+)/CD133 (+). Wnt/β‐catenin signalling activation also altered the metabolic state of hiPSCs from aerobic glycolysis to oxidative metabolism and changed their drug and oxidative stress sensitivities. These effects of GSK3 inhibition were suppressed in HIF1α‐stabilised cells.

    Conclusions

    Persistent activation of Wnt/β‐catenin signalling endows hiPSCs with proliferative/invasive ‘teratoma‐like’ states, shifting their metabolic dependence and allowing HIF1α‐stabilisation to inhibit their proliferative/invasive properties.

    Significance

    The hiPSC potential to differentiate into ‘teratoma‐like’ cells suggest that stem cells may exist in two states with differential metabolic and drug dependency.

     
    more » « less