skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vortex Dynamics in Trabeculated Embryonic Ventricles
Proper heart morphogenesis requires a delicate balance between hemodynamic forces, myocardial activity, morphogen gradients, and epigenetic signaling, all of which are coupled with genetic regulatory networks. Recently both in vivo and in silico studies have tried to better understand hemodynamics at varying stages of veretebrate cardiogenesis. In particular, the intracardial hemodynamics during the onset of trabeculation is notably complex—the inertial and viscous fluid forces are approximately equal at this stage and small perturbations in morphology, scale, and steadiness of the flow can lead to significant changes in bulk flow structures, shear stress distributions, and chemical morphogen gradients. The immersed boundary method was used to numerically simulate fluid flow through simplified two-dimensional and stationary trabeculated ventricles of 72, 80, and 120 h post fertilization wild type zebrafish embryos and ErbB2-inhibited embryos at seven days post fertilization. A 2D idealized trabeculated ventricular model was also used to map the bifurcations in flow structure that occur as a result of the unsteadiness of flow, trabeculae height, and fluid scale ( R e ). Vortex formation occurred in intertrabecular regions for biologically relevant parameter spaces, wherein flow velocities increased. This indicates that trabecular morphology may alter intracardial flow patterns and hence ventricular shear stresses and morphogen gradients. A potential implication of this work is that the onset of vortical (disturbed) flows can upregulate Notch1 expression in endothelial cells in vivo and hence impacts chamber morphogenesis, valvulogenesis, and the formation of the trabeculae themselves. Our results also highlight the sensitivity of cardiac flow patterns to changes in morphology and blood rheology, motivating efforts to obtain spatially and temporally resolved chamber geometries and kinematics as well as the careful measurement of the embryonic blood rheology. The results also suggest that there may be significant changes in shear signalling due to morphological and mechanical variation across individuals and species.  more » « less
Award ID(s):
1828163
PAR ID:
10106513
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Cardiovascular Development and Disease
Volume:
6
Issue:
1
ISSN:
2308-3425
Page Range / eLocation ID:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mechanical forces are essential for proper growth and remodeling of the primitive pharyngeal arch arteries (PAAs) into the great vessels of the heart. Despite general acknowledgement of a hemodynamic-malformation link, the direct correlation between hemodynamics and PAA morphogenesis remains poorly understood. The elusiveness is largely due to difficulty in performing isolated hemodynamic perturbations and quantifying changes in-vivo. Previous in-vivo arch artery occlusion/ablation experiments either did not isolate the effects of hemodynamics, did not analyze the results in a 3D context or did not consider the effects of varying degrees of occlusion. Here, we overcome these limitations by combining minimally invasive occlusion experiments in the avian embryo with 3D anatomical models of development and in-silico testing of experimental phenomenon. We detail morphological and hemodynamic changes 24 hours post vessel occlusion. 3D anatomical models showed that occlusion geometries had more circular cross-sectional areas and more elongated arches than their control counterparts. Computational fluid dynamics revealed a marked change in wall shear stress-morphology trends. Instantaneous (in-silico) occlusion models provided mechanistic insights into the dynamic vessel adaptation process, predicting pressure-area trends for a number of experimental occlusion arches. We follow the propagation of small defects in a single embryo Hamburger Hamilton (HH) Stage 18 embryo to a more serious defect in an HH29 embryo. Results demonstrate that hemodynamic perturbation of the presumptive aortic arch, through varying degrees of vessel occlusion, overrides natural growth mechanisms and prevents it from becoming the dominant arch of the aorta. 
    more » « less
  2. Hypertrophic cardiomyopathy (HCM) is a congenital heart disease characterized by thickening of the heart’s left ventricle (LV) wall that can lead to cardiac dysfunction and heart failure. Ventricular wall thickening affects the motion of cardiac walls and blood flow within the heart. Because abnormal cardiac blood flow in turn could lead to detrimental remodeling of heart walls, aberrant ventricular flow patterns could exacerbate HCM progression. How blood flow patterns are affected by hypertrophy and inter-patient variability is not known. To address this gap in knowledge, we present here strategies to generate personalized computational fluid dynamics (CFD) models of the heart LV from patient cardiac magnetic resonance (cMR) images. We performed simulations of CFD LV models from three cases (one normal, two HCM). CFD computations solved for blood flow velocities, from which flow patterns and the energetics of flow within the LV were quantified. We found that, compared to a normal heart, HCM hearts exhibit anomalous flow patterns and a mismatch in the timing of energy transfer from the LV wall to blood flow, as well as changes in kinetic energy flow patterns. While our results are preliminary, our presented methodology holds promise for in-depth analysis of HCM patient hemodynamics in clinical practice. 
    more » « less
  3. null (Ed.)
    Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids. 
    more » « less
  4. Abstract Biofilms are subjected to many environmental pressures that can influence community structure and physiology. In the oral cavity, and many other environments, biofilms are exposed to forces generated by fluid flow; however, our understanding of how oral biofilms respond to these forces remains limited. In this study, we developed a linear rocker model of fluid flow to study the impact of shear forces onStreptococcus gordoniiand dental plaque‐derived multispecies biofilms. We observed that as shear forces increased,S. gordoniibiofilm biomass decreased. Reduced biomass was largely independent of overall bacterial growth. Transcriptome analysis ofS. gordoniibiofilms exposed to moderate levels of shear stress uncovered numerous genes with differential expression under shear. We also evaluated an ex vivo plaque biofilm exposed to fluid shear forces. LikeS. gordonii, the plaque biofilm displayed decreased biomass as shear forces increased. Examination of plaque community composition revealed decreased diversity and compositional changes in the plaque biofilm exposed to shear. These studies help to elucidate the impact of fluid shear on oral bacteria and may be extended to other bacterial biofilm systems. 
    more » « less
  5. ABSTRACT Early outflow morphogenesis is a critical event in cardiac development. Understanding mechanical and molecular based morphogenetic relationships at early stages of cardiogenesis is essential for the advancement of cardiovascular technology related to congenital heart defects. In this study, we pair molecular changes in pharyngeal arch artery (PAA) vascular smooth muscle cells (VSMCs) with hemodynamic changes over the course of the same period. We focus on Hamburger Hamilton stage 24–36 chick embryos, using both Doppler ultrasound and histological sections to phenotype PAA VSMCs, and establish a relationship between hemodynamics and PAA composition. Our findings show that PAA VSMCs transition through a synthetic, intermediate, and contractile phenotype over time. Wall shear stress magnitude per arch varies throughout development. Despite distinct hemodynamic and fractional expression trends, no strong correlation was found between the two, indicating that WSS magnitude is not the main driver of PAA wall remodeling and maturation. While WSS magnitude was not found to be a major driver, this work provides a basic framework for investigating relationships between hemodynamic forces and tunica media during a critical period of development. Anat Rec, 302:153–162, 2019. © 2018 Wiley Periodicals, Inc. 
    more » « less