Abstract Hydrologic connectivity controls the lateral exchange of water, solids, and solutes between rivers and floodplains, and is critical to ecosystem function, water treatment, flood attenuation, and geomorphic processes. This connectivity has been well‐studied, typically through the lens of fluvial flooding. In regions prone to heavy rainfall, the timing and magnitude of lateral exchange may be altered by pluvial flooding on the floodplain. We collected measurements of flow depth and velocity in the Trinity River floodplain in coastal Texas (USA) during Tropical Storm Imelda (2019), which produced up to 75 cm of rainfall locally. We developed a two‐dimensional hydrodynamic model at high resolution for a section of the Trinity River floodplain inspired by the compound flooding of Imelda. We then employed Lagrangian particle routing to quantify how residence times and particle velocities changed as flooding shifted from rainfall‐driven to river‐driven. Results show that heavy rainfall initiated lateral exchange before river discharge reached flood levels. The presence of rainwater also reduced floodplain storage, causing river water to be confined to a narrow corridor on the floodplain, while rainwater residence times were increased from the effect of high river flow. Finally, we analyzed the role of floodplain channels in facilitating surface‐water connectivity by varying model resolution in the floodplain. While the resolution of floodplain channels was important locally, it did not affect as much the overall floodplain behavior. This study demonstrates the complexity of floodplain hydrodynamics under conditions of heavy rainfall, with implications for sediment deposition and nutrient removal during floods.
more »
« less
Nitrate Removal Within Heterogeneous Riparian Aquifers Under Tidal Influence
Abstract Tides in coastal rivers drive river‐groundwater (hyporheic) exchange and provide opportunities for nitrate removal that may improve coastal water quality. Silt and sand layers in coastal floodplain sediments can alter the flow and transformation of nitrate. Our goal was to understand how sediment heterogeneity influences nitrogen dynamics near tidal rivers. Numerical simulations show that oxic, variably saturated sand layers and anoxic, organic‐rich silt layers are sites of nitrification and denitrification, respectively. The exchange of river water and nitrate through heterogeneous sediments increases with sand fraction, as sand lenses become longer and more connected. The amount of nitrate removed from river water also increases but represents a smaller portion of total nitrate exchange through the hyporheic zone, causing removal efficiency to decline. Our results suggest that accurate characterization of aquifer heterogeneity leads to an improved understanding of sites of nutrient transformation within floodplain sediments.
more »
« less
- PAR ID:
- 10447357
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 10
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Human activities have increased nitrate export from rivers, degrading coastal water quality. At deltaic river mouths, the flow of water through wetlands increases nitrate removal, and the spatial organization of removal rates influences coastal water quality. To understand the spatial distribution of nitrate removal in a river‐dominated delta, we deployed 23 benthic chambers across ecogeomorphic zones with varying elevation, vegetation, and sediment properties in Wax Lake Delta (Louisiana, USA) in June 2018. Regression analyses indicate that normalized difference vegetation index is a useful predictor of summertime nitrate removal. Mass transfer velocity were approximately three times greater on a vegetated submerged levee (13 mm hr−1), where normalized difference vegetation index was greatest, compared to other locations (4.6 mm hr−1). Two methods were developed to upscale nitrate removal across the delta. The flooded‐delta method integrates spatially explicit potential removal rates across submerged portions of the delta and suggests that intermediate elevations on the delta—including submerged levees—are responsible for 70% of potential nitrate removal despite covering only 33% of the flooded area. The channel network method treats the delta as a network of river channels and suggests that although secondary channels are more efficient than primary channels at removing received nitrate, primary channels collectively contribute more to overall removal because they convey more of the total nitrate load. The two upscaling methods predict similar rates of nitrate removal, equivalent to less than 4% of nitrate entering the delta. To protect coastal waters against high nitrate loads, management policies should aim to reduce upstream nutrient loads.more » « less
-
Abstract Hyporheic exchange has the potential to significantly influence river temperatures in regions of continuous permafrost under low‐flow conditions given the strong thermal gradients that exist in river bed sediments. However, there is limited understanding of the impacts of hyporheic exchange on Arctic river temperatures. To address this knowledge gap, heat fluxes associated with hyporheic exchange were estimated in a fourth‐order Arctic river using field observations coupled with a river temperature model that accounts for hyporheic exchange influences. Temperature time series and tracer study solute breakthrough curves were measured in the main channel and river bed at multiple locations and depths to characterize hyporheic exchange and provide parameter bounds for model calibration. Model results for low‐flow periods from 3 years indicated that hyporheic exchange contributed up to 27% of the total river energy balance, reduced the main channel diel temperature range by up to 1.7 °C, and reduced mean daily temperatures by up to 0.21 °C over a 13.1‐km study reach. These influences are due to main channel heat loss during the day and gain at night via hyporheic exchange and heat loss from the hyporheic zone to the ground below via conduction. Main channel temperatures were found to be sensitive to simulated changes in ground temperatures due to changes in hyporheic exchange heat flux and deeper ground conduction. These results suggest that the moderating influence of hyporheic exchange could be reduced if ground temperatures warm in response to projected increases in permafrost thaw below rivers.more » « less
-
Abstract In coastal rivers, tides facilitate surface water‐groundwater exchange and strongly coupled nitrification‐denitrification near the fluctuating water table. We used numerical fluid flow and reactive transport models to explore hydrogeologic and biogeochemical controls on nitrogen transport along an idealized tidal freshwater zone based on field observations from White Clay Creek, Delaware, USA. The capacity of the riparian aquifer to remove nitrate depends largely on nitrate transport rates, which initially increase with increasing tidal range but then decline as sediments become muddier and permeability decreases. Over the entire model reach, local nitrification provides a similar amount of nitrate as surface and groundwater contributions combined. More than half (~66%) of nitrate removed via denitrification is produced in situ, while the vast majority of remaining nitrate removed comes from groundwater sources. In contrast, average nitrate removal from surface water due to tidal pumping amounts to only ~1% of the average daily in‐channel riverine nitrate load or 1.77 kg of nitrate along the reach each day. As a result, tidal bank storage zones may not be major sinks for nitrate in coastal rivers but can act as effective sinks for groundwater nitrate. By extension, tidal bank storage zones provide a critical ecosystem service, reducing contributions of groundwater nitrate, which is often derived from septic tanks and fertilizers, to coastal rivers.more » « less
-
This repository contains all the water chemistry data, sediment borehole lithology observations, and handheld XRF observations of elemental concentrations in sediments used in this study. Study Abstract Groundwater containing high concentrations of dissolved arsenic (As) and iron (Fe(II)) discharges to rivers across the Ganges-Brahmaputra-Meghna delta. Observed Fe(III)-oxyhydroxide (FeOOH)-As deposits lining the riverbanks of the Meghna River may have been created by bidirectional mixing in the hyporheic zone (HZ) from ocean tides. This process has been named the Natural Reactive Barrier (NRB). Sedimentary organic carbon (SOC) is deposited annually on floodplains. Floodwaters that infiltrate through this layer may chemically transform the groundwater prior to discharging through the HZ in ways that influence the capture and retention of As in the NRB. The goal of this study is to understand how the interaction of these two scales of river-groundwater mixing influence the fate of As trapped within an NRB. Monitoring wells were installed to 1-17 m depth, up to 100 m distance from the river’s edge during the dry season on the East (Site 1) and West (Site 2) sides of the river. They were sampled during the dry season (January) under gaining river conditions. The physical properties and elemental composition of the sediment was described by hand observation and hand-held X-Ray Fluorescence (XRF), respectively. Mixing with river water was quantified using the sum of charge of major cations (TC). Site 1 has a sloping bank that is only partially inundated during the wet season. The aquifer is composed of homogeneous sand. Site 2 is flat and therefore fully inundated in the wet season. The aquifer is composed of sand with thin (1-20 cm thick) clay layers. Both sites generate the dissolved products of FeOOH-reduction coupled to organic carbon oxidation, and silicate weathering beneath the floodplain. These products are dissolved Fe, As, silica, bicarbonate, calcium and phosphate. This chemistry is conducive to the formation of crystalline iron oxide minerals such as goethite which may co-precipitate with As, trapping it long-term.more » « less
An official website of the United States government
