skip to main content


Title: High‐entropy transparent ceramics: Review of potential candidates and recently studied cases
Abstract

High‐entropy ceramics have been widely explored and extensively studied since the first demonstration of the configuration entropy stabilized reversible transitions between multiple and single phases by Rost et al. in 2015. Most of the current research on high‐entropy ceramics has focused on properties like thermal conductivity, thermoelectricity, structures, and others. Some recent studies have extended the high‐entropy concept to the field of transparent ceramics. We reviewed these papers and proposed four potential ceramics groups for high‐entropy transparent ceramics including fluoride ceramics, fluorite‐deficient and/or ordered pyrochlore A2B2O7ceramics, garnet ceramics, and sesquioxide ceramics. In this article, we review ceramic powder synthesis, the fabrication of transparent ceramics, high‐entropy ceramics, and limited cases of high‐entropy transparent ceramics for each category. High‐entropy transparent ceramics with diverse compositions and structures will provide more possibilities for functional transparent ceramics in the future.

 
more » « less
NSF-PAR ID:
10447443
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
International Journal of Applied Ceramic Technology
Volume:
19
Issue:
2
ISSN:
1546-542X
Page Range / eLocation ID:
p. 644-672
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tm3+‐doped mixed sesquioxide transparent ceramics are attractive candidates for the generation of robust ~2.1 μm lasers. In this paper, laser‐quality Tm:(Lu0.8Sc0.2)2O3mixed sesquioxide ceramics were shaped for the first time by gelcasting of well‐dispersed nanopowders, which were obtained using a modified coprecipitation method. The dispersibility of starting nanopowders was largely improved using alcohol‐water solvent. The rheological properties of slurries were optimized for gelcasting. We also investigated the densification behavior of the gel‐casted green compacts. In contrast to the dry‐pressing route, it was found that gelcasting could yield more homogeneous and transparent ceramics. The optical in‐line transmittance of the ceramic rod 12 mm in length was as high as 80.3% at 2090 nm. Upon pumping the ceramic rod by 796 nm diode laser, a 1.88 WCWlaser at 2090 nm was acquired with a slope efficiency of 24.6% (with respect to the input pump power).

     
    more » « less
  2. Abstract

    Fluoride phase separation is the initial stage of nanocrystallization in oxyfluoride glasses, and it is a key step in achieving transparent glass‐ceramics with good luminescence. In this work, we combine molecular dynamics (MD) simulations and experimental studies to investigate the phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass and glass‐ceramics containing alkali earth fluoride (MF2). The results reveal different phase separation behaviors due to the field strength difference of M2+. The composition and size similarity between the fluoride‐rich regions in the MD simulated glass and the fluoride nanocrystals in the experimental prepared glass‐ceramics are observed, suggesting that the separated fluoride phase is the structural origin of the observed MF2nanocrystals. Besides, in order to understand the M2+dependent glass structural features, the crystallization temperatures, the luminescent properties of Eu3+and Eu2+doped glass‐ceramics, and the lasing performance of Er3+doped glass‐ceramics are discussed. Based on these comprehensions, some strategies are proposed to help to efficiently design oxyfluoride glass with desired luminescence performance.

     
    more » « less
  3. Abstract Two new high-entropy ceramics (HECs) in the weberite and fergusonite structures, along with the unexpected formation of ordered pyrochlore phases with ultrahigh-entropy compositions and an abrupt pyrochlore-weberite transition, are discovered in a 21-component oxide system. While the Gibbs phase rule allows 21 equilibrium phases, 9 out of the 13 compositions examined possess single HEC phases (with ultrahigh ideal configurational entropies: ∼2.7 k B per cation or higher on one sublattice in most cases). Notably, (15RE 1/15 )(Nb 1/2 Ta 1/2 )O 4 possess a single monoclinic fergusonite (C2/ c ) phase, and (15RE 1/15 ) 3 (Nb 1/2 Ta 1/2 ) 1 O 7 form a single orthorhombic (C222 1 ) weberite phase, where 15RE 1/15 represents Sc 1/15 Y 1/15 La 1/15 Pr 1/15 Nd 1/15 Sm 1/15 Eu 1/15 Gd 1/15 Tb 1/15 Dy 1/15 Ho 1/15 Er 1/15 Tm 1/15 Yb 1/15 Lu 1/15 . Moreover, a series of eight (15RE 1/15 ) 2+ x (Ti 1/4 Zr 1/4 Ce 1/4 H 1/4 ) 2−2 x (Nb 1/2 Ta 1/2 ) x O 7 specimens all exhibit single phases, where a pyrochlore-weberite transition occurs within 0.75 < x < 0.8125. This cubic-to-orthorhombic transition does not change the temperature-dependent thermal conductivity appreciably, as the amorphous limit may have already been achieved in the ultrahigh-entropy 21-component oxides. These discoveries expand the diversity and complexity of HECs, towards many-component compositionally complex ceramics (CCCs) and ultrahigh-entropy ceramics. 
    more » « less
  4. Abstract

    Single crystal scintillators have become one of the most common materials used in technologies that use radiation detectors. Unfortunately, as technology demands improved detectors, research into better single crystal scintillators has nearly reached its limit. Ceramics provide many benefits over single crystal scintillators and have emerged as a promising new production process. Recent research into ceramic scintillators has mostly dealt with oxides as they are relatively easy to handle and are typically non‐hygroscopic. Among single crystal scintillators, a trend has emerged indicating that the addition of halide ions into the crystal structure improves the light yield and energy resolution of the scintillation material but also tends to make the material hygroscopic and in some cases intrinsically radioactive. Little research is devoted to the investigation of undoped halide ceramic scintillators. Transparent halide Cs2HfCl6ceramics are developed by hot uniaxial pressing, and the scintillation properties are compared to that of its single crystal counterpart. The energy resolution of the ceramic is found to be 6.4% at 662 keV. The initial results indicate that ceramic scintillators are a viable alternative and a promising new direction in scintillator material technology.

     
    more » « less
  5. Abstract

    For the first time, a transparent high‐entropy fluoride laser ceramic has been prepared and characterized. X‐ray diffraction (XRD) analysis of a CeNdCaSrBaF12(CNCSBF) transparent ceramic consolidated by vacuum hot pressing (VHP) reveals that Ce3+, Nd3+, Ca2+, Sr2+, and Ba2+have formed a single‐phased fluorite solid solution, with a lattice constant of 5.826 Å. Bulk density measurements produced a value of 6.15 g/cm3. Scanning electron microscopy (SEM) analysis of the ceramic revealed a uniform distribution of grain sizes in the material, with the average grain size being approximately 20 μm. The material exhibits a maximum in‐line transmittance of approximately 60% at 1000 nm. A near‐infrared range photoluminescence (PL) emission band was observed at 1057 nm, with a visible‐range PL emission band being located at 440 nm.

     
    more » « less