skip to main content


Title: SelfCode: An Annotated Corpus and a Model for Automated Assessment of Self-Explanation During Source Code Comprehension
The ability to automatically assess learners' activities is the key to user modeling and personalization in adaptive educational systems.The work presented in this paper opens an opportunity to expand the scope of automated assessment from traditional programming problems to code comprehension tasks where students are requested to explain the critical steps of a program. The ability to automatically assess these self-explanations offers a unique opportunity to understand the current state of student knowledge, recognize possible misconceptions, and provide feedback. Annotated datasets are needed to train Artificial Intelligence/Machine Learning approaches for the automated assessment of student explanations. To answer this need, we present a novel corpus called SelfCode which consists of 1,770 sentence pairs of student and expert self-explanations of Java code examples, along with semantic similarity judgments provided by experts. We also present a baseline automated assessment model that relies on textual features. The corpus is available at the GitHub repository (https://github.com/jeevanchaps/SelfCode).  more » « less
Award ID(s):
1934745 1918751 1822816 1822752
NSF-PAR ID:
10447570
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The International FLAIRS Conference Proceedings
Volume:
36
ISSN:
2334-0762
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To develop code that meets its specification and is verifiably correct, such as in a software engineering course, students must be able to understand formal contracts and annotate their code with assertions such as loop invariants. To assist in developing suitable instructor and automated tool interventions, this research aims to go beyond simple pre- and post-conditions and gain insight into student learning of loop invariants involving objects. As students develop suitable loop invariants for given code with the aid of an online system backed by a verification engine, each student attempt, either correct or incorrect, was collected and analyzed automatically, and catalogued using an iterative process to capture common difficulties. Students were also asked to explain their thought process in arriving at their answer for each submission. The collected explanations were analyzed manually and found to be useful to assess their level of understanding as well as to extract actionable information for instructors and automated tutoring systems. Qualitative conclusions include the impact of the medium. 
    more » « less
  2. Abstract

    Dietary intake, eating behaviors, and context are important in chronic disease development, yet our ability to accurately assess these in research settings can be limited by biased traditional self-reporting tools. Objective measurement tools, specifically, wearable sensors, present the opportunity to minimize the major limitations of self-reported eating measures by generating supplementary sensor data that can improve the validity of self-report data in naturalistic settings. This scoping review summarizes the current use of wearable devices/sensors that automatically detect eating-related activity in naturalistic research settings. Five databases were searched in December 2019, and 618 records were retrieved from the literature search. This scoping review includedN = 40 studies (from 33 articles) that reported on one or more wearable sensors used to automatically detect eating activity in the field. The majority of studies (N = 26, 65%) used multi-sensor systems (incorporating > 1 wearable sensors), and accelerometers were the most commonly utilized sensor (N = 25, 62.5%). All studies (N = 40, 100.0%) used either self-report or objective ground-truth methods to validate the inferred eating activity detected by the sensor(s). The most frequently reported evaluation metrics were Accuracy (N = 12) and F1-score (N = 10). This scoping review highlights the current state of wearable sensors’ ability to improve upon traditional eating assessment methods by passively detecting eating activity in naturalistic settings, over long periods of time, and with minimal user interaction. A key challenge in this field, wide variation in eating outcome measures and evaluation metrics, demonstrates the need for the development of a standardized form of comparability among sensors/multi-sensor systems and multidisciplinary collaboration.

     
    more » « less
  3. Self-explanations could increase student’s comprehension in complex domains; however, it works most efficiently with a human tutor who could provide corrections and scaffolding. In this paper, we present our attempt to scale up the use of self-explanations in learning programming by delegating assessment and scaffolding of explanations to an intelligent tutor. To assess our approach, we performed a randomized control trial experiment that measured the impact of automatic assessment and scaffolding of self-explanations on code comprehension and learning. The study results indicate that low-prior knowledge students in the experimental condition learn more compared to high-prior knowledge in the same condition but such difference is not observed in a similar grouping of students based on prior knowledge in the control condition. 
    more » « less
  4. N. Wang, G. Rebolledo-Mendez (Ed.)
    Self-explanations could increase student’s comprehension in complex domains; however, it works most efficiently with a human tutor who could provide corrections and scaffolding. In this paper, we present our attempt to scale up the use of self-explanations in learning program- ming by delegating assessment and scaffolding of explanations to an intel- ligent tutor. To assess our approach, we performed a randomized control trial experiment that measured the impact of automatic assessment and scaffolding of self-explanations on code comprehension and learning. The study results indicate that low-prior knowledge students in the experi- mental condition learn more compared to high-prior knowledge in the same condition but such difference is not observed in a similar grouping of students based on prior knowledge in the control condition. 
    more » « less
  5. Wang, N. ; Rebolledo-Mendez ; G., Dimitrova ; V., Matsuda ; Santos, O.C. (Ed.)
    Self-explanations could increase student’s comprehension in complex domains; however, it works most efficiently with a human tutor who could provide corrections and scaffolding. In this paper, we present our attempt to scale up the use of self-explanations in learning programming by delegating assessment and scaffolding of explanations to an intelligent tutor. To assess our approach, we performed a randomized control trial experiment that measured the impact of automatic assessment and scaffolding of self-explanations on code comprehension and learning. The study results indicate that low-prior knowledge students in the experimental condition learn more compared to high-prior knowledge in the same condition but such difference is not observed in a similar grouping of students based on prior knowledge in the control condition. 
    more » « less