skip to main content

Title: Laboratory and field evaluation of a low-cost methane sensor and key environmental factors for sensor calibration
Low-cost sensors enable finer-scale spatiotemporal measurements within the existing methane (CH 4 ) monitoring infrastructure and could help cities mitigate CH 4 emissions to meet their climate goals. While initial studies of low-cost CH 4 sensors have shown potential for effective CH 4 measurement at ambient concentrations, sensor deployment remains limited due to questions about interferences and calibration across environments and seasons. This study evaluates sensor performance across seasons with specific attention paid to the sensor's understudied carbon monoxide (CO) interferences and environmental dependencies through long-term ambient co-location in an urban environment. The sensor was first evaluated in a laboratory using chamber calibration and co-location experiments, and then in the field through two 8 week co-locations with a reference CH 4 instrument. In the laboratory, the sensor was sensitive to CH 4 concentrations below ambient background concentrations. Different sensor units responded similarly to changing CH 4 , CO, temperature, and humidity conditions but required individual calibrations to account for differences in sensor response factors. When deployed in-field, co-located with a reference instrument near Baltimore, MD, the sensor captured diurnal trends in hourly CH 4 concentration after corrections for temperature, absolute humidity, CO concentration, and hour of day. Variable performance was observed across seasons with the sensor performing well ( R 2 = 0.65; percent bias 3.12%; RMSE 0.10 ppm) in the winter validation period and less accurately ( R 2 = 0.12; percent bias 3.01%; RMSE 0.08 ppm) in the summer validation period where there was less dynamic range in CH 4 concentrations. The results highlight the utility of sensor deployment in more variable ambient CH 4 conditions and demonstrate the importance of accounting for temperature and humidity dependencies as well as co-located CO concentrations with low-cost CH 4 measurements. We show this can be addressed via Multiple Linear Regression (MLR) models accounting for key covariates to enable urban measurements in areas with CH 4 enhancement. Together with individualized calibration prior to deployment, the sensor shows promise for use in low-cost sensor networks and represents a valuable supplement to existing monitoring strategies to identify CH 4 hotspots.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Atmospheres
Page Range / eLocation ID:
683 to 694
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to collect data with increased temporal and spatial resolution, providing data on a large scale with unprecedented levels of detail. This type of data has the potential to empower people to make personal decisions about their exposure and support the development of local strategies for reducing pollution and improving health outcomes. However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period and then applying machine learning or other model fitting technique such as multiple linear regression to develop a calibration model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of ambient conditions (e.g., temperature) and cross sensitivities with nontarget pollutants, there is a growing body of evidence that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation between pollutant levels and environmental conditions, including diurnal cycles. As a result, a sensor package trained at a field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or high-resolution monitoring of a neighborhood. We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting data from multiple regulatory sites and building a calibration model that leverages data from a more diverse data set. We deployed three sensor packages to each of three sites with reference monitors (nine packages total) and then rotated the sensor packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering varying environmental conditions, general air quality composition, and pollutant concentrations. When compared to prior single-site calibration, the multisite approach exhibits better model transferability for a range of modeling approaches. Our experiments also reveal that random forest is especially prone to overfitting and confirm prior results that transfer is a significant source of both bias and standard error. Linear regression, on the other hand, although it exhibits relatively high error, does not degrade much in transfer. Bias dominated in our experiments, suggesting that transferability might be easily increased by detecting and correcting for bias. Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration to lower the cost of training and better tolerate transfer. We contribute a new neural network architecture model termed split-NN that splits the model into two stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms multiple linear regression, traditional two- and four-layer neural networks, and random forest models. Depending on the training configuration, compared to random forest the split-NN method reduced error 0 %–11 % for NO2 and 6 %–13 % for O3. 
    more » « less
  2. null (Ed.)
    Abstract. The TGS 2600 was the first low-cost solid-state sensor that shows a response to ambient levels of CH4 (e.g., range ≈1.8–2.7 µmol mol−1). Here we present an empirical function to correct the TGS 2600 signal for temperature and (absolute) humidity effects and address the long-term reliability of two identical sensors deployed from 2012 to 2018. We assess the performance of the sensors at 30 min resolution and aggregated to weekly medians. Over the entire period the agreement between TGS-derived and reference CH4 mole fractions measured by a high-precision Los Gatos Research instrument was R2=0.42, with better results during summer (R2=0.65 in summer 2012). Using absolute instead of relative humidity for the correction of the TGS 2600 sensor signals reduced the typical deviation from the reference to less than ±0.1 µmol mol−1 over the full range of temperatures from −41 to 27 ∘C. At weekly resolution the two sensors showed a downward drift of signal voltages indicating that after 10–13 years a TGS 2600 may have reached its end of life. While the true trend in CH4 mole fractions measured by the high-quality reference instrument was 10.1 nmolmol-1yr-1 (2012–2018), part of the downward trend in sensor signal (ca. 40 %–60 %) may be due to the increase in CH4 mole fraction because the sensor voltage decreases with increasing CH4 mole fraction. Weekly median diel cycles tend to agree surprisingly well between the TGS 2600 and reference measurements during the snow-free season, but in winter the agreement is lower. We suggest developing separate functions for deducing CH4 mole fractions from TGS 2600 measurements under cold and warm conditions. We conclude that the TGS 2600 sensor can provide data of research-grade quality if it is adequately calibrated and placed in a suitable environment where cross-sensitivities to gases other than CH4 are of no concern. 
    more » « less
  3. Small unmanned aircraft systems (UAS) are increasingly being used for meteorology and atmospheric monitoring. The ease of deployment makes distributed sensing of parameters such as barometric pressure, temperature, and relative humidity in the lower atmospheric boundary layer feasible. However, constraints on payload size and weight, and to a lesser extent power, limit the types of sensors that can be deployed. The objective of this work was to develop a miniature pressure-temperature-humidity (PTH) probe for UAS integration. A set of eight PTH probes were fabricated and calibrated/validated using an environmental chamber. An automated routine was developed to facilitate calibration and validation from a large set of temperature and relative humidity setpoints. Linear regression was used to apply temperature and relative humidity calibrations. Barometric pressure was calibrated using a 1-point method consisting of an offset. The resulting PTH probes were less than 4 g in mass and consumed less than 1 mA when operated from a 5 VDC source. Measurements were transmitted as a formatted string in ASCII format at 1 Hz over a 3.3 V TTL UART. Prior to calibration, measurements between individual PTH probes were significantly different. After calibration, no significant differences in temperature measurements across all PTH probes were observed, and the level of significance between PTH probes was reduced. Actual differences between calibrated PTH probes were likely to be negligible for most UAS-based applications, regardless of significance. RMSE across all calibrated PTH probes for the pressure, temperature, and relative humidity was less than 31 Pa, 0.13 °C, and 0.8% RH, respectively. The resulting calibrated PTH probes will improve the ability to quantify small variations in ambient conditions during coordinated multi-UAS flights. 
    more » « less
  4. Abstract. Low-cost sensors are often co-located with reference instruments to assess their performance and establish calibration equations, but limiteddiscussion has focused on whether the duration of this calibration period can be optimized. We placed a multipollutant monitor that containedsensors that measured particulate matter smaller than 2.5 µm (PM2.5), carbon monoxide (CO), nitrogendioxide (NO2), ozone (O3), and nitric oxide (NO) at a reference field site for 1 year. We developed calibration equationsusing randomly selected co-location subsets spanning 1 to 180 consecutive days out of the 1-year period and compared the potential root-mean-square error (RMSE) and Pearson correlation coefficient (r) values. The co-located calibration period required to obtain consistent results varied bysensor type, and several factors increased the co-location duration required for accurate calibration, including the response of a sensor toenvironmental factors, such as temperature or relative humidity (RH), or cross-sensitivities to other pollutants. Using measurements fromBaltimore, MD, where a broad range of environmental conditions may be observed over a given year, we found diminishing improvements in the medianRMSE for calibration periods longer than about 6 weeks for all the sensors. The best performing calibration periods were the ones that contained arange of environmental conditions similar to those encountered during the evaluation period (i.e., all other days of the year not used in thecalibration). With optimal, varying conditions it was possible to obtain an accurate calibration in as little as 1 week for all sensors, suggestingthat co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of thedesired measurement setting. 
    more » « less
  5. null (Ed.)
    Short-term exposure to fine particulate matter (PM2.5) pollution is linked to numerous adverse health effects. Pollution episodes, such as wildfires, can lead to substantial increases in PM2.5 levels. However, sparse regulatory measurements provide an incomplete understanding of pollution gradients. Here, we demonstrate an infrastructure that integrates community-based measurements from a network of low-cost PM2.5 sensors with rigorous calibration and a Gaussian process model to understand neighborhood-scale PM2.5 concentrations during three pollution episodes (July 4, 2018, fireworks; July 5 and 6, 2018, wildfire; Jan 3−7, 2019, persistent cold air pool, PCAP). The firework/wildfire events included 118 sensors in 84 locations, while the PCAP event included 218 sensors in 138 locations. The model results accurately predict reference measurements during the fireworks (n: 16, hourly root-mean-square error, RMSE, 12.3−21.5 μg/m3, n(normalized)-RMSE: 9−24%), the wildfire (n: 46, RMSE: 2.6−4.0 μg/m3; nRMSE: 13.1−22.9%), and the PCAP (n: 96, RMSE: 4.9−5.7 μg/m3; nRMSE: 20.2−21.3%). They also revealed dramatic geospatial differences in PM2.5 concentrations that are not apparent when only considering government measurements or viewing the US Environmental Protection Agency’s AirNow’s visualizations. Complementing the PM2.5 estimates and visualizations are highly resolved uncertainty maps. Together, these results illustrate the potential for low-cost sensor networks that combined with a data-fusion algorithm and appropriate calibration and training can dynamically and with improved accuracy estimate PM2.5 concentrations during pollution episodes. These highly resolved uncertainty estimates can provide a much-needed strategy to communicate uncertainty to end users. 
    more » « less