skip to main content

Title: Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation
Abstract. Paleoclimatic records provide valuable information about Holocene climate, revealing aspects of climate variability for a multitude of sites around the world. However, such data also possess limitations. Proxy networks are spatially uneven, seasonally biased, uncertain in time, and present a variety of challenges when used in concert to illustrate the complex variations of past climate. Paleoclimatic data assimilation provides one approach to reconstructing past climate that can account for the diversenature of proxy records while maintaining the physics-based covariancestructures simulated by climate models. Here, we use paleoclimate dataassimilation to create a spatially complete reconstruction of temperatureover the past 12 000 years using proxy data from the Temperature 12k database and output from transient climate model simulations. Following the last glacial period, the reconstruction shows Holocene temperatures warming to a peak near 6400 years ago followed by a slow cooling toward the present day, supporting a mid-Holocene which is at least as warm as the preindustrial. Sensitivity tests show that if proxies have an overlooked summer bias, some apparent mid-Holocene warmth could actually represent summer trends rather than annual mean trends. Regardless, the potential effects of proxy seasonal biases are insufficient to align the reconstructed global mean temperature with the warming trends seen in transient model simulations.  more » « less
Award ID(s):
1903548 1903465
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Page Range / eLocation ID:
2599 to 2629
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    During the mid‐Holocene (MH: ∼6,000 years Before Present) and Last Interglacial LIG (LIG: ∼129,000–116,000 years Before Present) differences in the seasonal and latitudinal distribution of insolation drove Northern Hemisphere high‐latitude warming comparable to that projected for the end of the 21st century in low emissions scenarios. Paleoclimate proxy records point to distinct but regionally variable hydroclimatic changes during these past warm intervals. However, model simulations have generally disagreed on North American regional moisture patterns during the MH and LIG. To investigate how closely the latest generation of models associated with the Paleoclimate Model Intercomparison Project (PMIP4) reproduces proxy‐inferred moisture patterns during recent warm periods, we compare hydroclimate output from 17 PMIP4 models with newly updated compilations of moisture‐sensitive North American proxy records during the MH and LIG. Agreement is lower for the MH, with models producing wet anomalies across the western United States (US) where most proxies indicate increased aridity relative to the preindustrial period. The models that agree most closely with the LIG proxy compilation display relative wetness in the eastern US and Alaska, and dryness in the northwest and central US. An assessment of atmospheric dynamics using an ensemble of the three LIG simulations that best agree with the proxies suggests that weaker winter North Pacific pressure gradients and steeper summer North Pacific and Atlantic gradients drive LIG precipitation patterns. Our updated compilations and proxy‐model comparisons offer a tool for benchmarking climate models and their performance in simulating climate states that are warmer than present.

    more » « less
  2. Abstract

    The Holocene is considered a period of relative climatic stability, but significant proxy data‐model discrepancies exist that preclude consensus regarding the postglacial global temperature trajectory. In particular, a mid‐Holocene Climatic Optimum, ~9,000 to ~5,000 years BP, is evident in Northern Hemisphere marine sediment records, but its absence from model simulations raises key questions about the ability of the models to accurately simulate climate and seasonal biases that may be present in the proxy records. Here we present new mid‐Holocene sea surface temperature (SST) data from the western tropical Atlantic, where twentieth‐century temperature variability and amplitude of warming track the twentieth‐century global ocean. Using a new coral thermometer Sr‐U, we first developed a temporal Sr‐U SST calibration from three modern Atlantic corals and validated the calibration against Sr‐U time series from a fourth modern coral. Two fossil corals from the Enriquillo Valley, Dominican Republic, were screened for diagenesis, U‐series dated to 5,199 ± 26 and 6,427 ± 81 years BP, respectively, and analyzed for Sr/Ca and U/Ca, generating two annually resolved Sr‐U SST records, 27 and 17 years long, respectively. Average SSTs from both corals were significantly cooler than in early instrumental (1870–1920) and late instrumental (1965–2016) periods at this site, by ~0.5 and ~0.75 °C, respectively, a result inconsistent with the extended mid‐Holocene warm period inferred from sediment records. A more complete sampling of Atlantic Holocene corals can resolve this issue with confidence and address questions related to multidecadal and longer‐term variability in Holocene Atlantic climate.

    more » « less
  3. Abstract. Reconstructions of past temperature and precipitation are fundamental to modeling the Greenland Ice Sheet and assessing its sensitivity to climate. Paleoclimate information is sourced from proxy records and climate-model simulations; however, the former are spatially incomplete while the latter are sensitive to model dynamics and boundary conditions. Efforts to combine these sources of information to reconstruct spatial patterns of Greenland climate over glacial–interglacial cycles have been limited by assumptions of fixed spatial patterns and a restricted use of proxy data. We avoid these limitations by using paleoclimate data assimilation to create independent reconstructions of mean-annual temperature and precipitation for the last 20 000 years. Our method uses oxygen isotope ratios of ice and accumulation rates from long ice-core records and extends this information to all locations across Greenland using spatial relationships derived from a transient climate-model simulation. Standard evaluation metrics for this method show that our results capture climate at locations without ice-core records. Our results differ from previous work in the reconstructed spatial pattern of temperature change during abrupt climate transitions; this indicates a need for additional proxy data and additional transient climate-model simulations. We investigate the relationship between precipitation and temperature, finding that it is frequency dependent and spatially variable, suggesting that thermodynamic scaling methods commonly used in ice-sheet modeling are overly simplistic. Our results demonstrate that paleoclimate data assimilation is a useful tool for reconstructing the spatial and temporal patterns of past climate on timescales relevant to ice sheets. 
    more » « less
  4. Abstract

    The Yucatán Peninsula (YP) has a complex hydroclimate with many proposed drivers of interannual and longer‐term variability, ranging from coupled ocean–atmosphere processes to frequency of tropical cyclones. The mid‐Holocene, a time of higher Northern Hemisphere summer insolation, provides an opportunity to test the relationship between YP precipitation and ocean temperature. Here, we present a new, ∼annually resolved speleothem record of stable isotope (δ18O and δ13C) and trace element (Mg/Ca and Sr/Ca) ratios for a section of the mid‐Holocene (5.2–5.7 kyr BP), before extensive agriculture began in the region. A meter‐long stalagmite from Río Secreto, a cave system in Playa del Carmen, Mexico, was dated using U–Th geochronology and layer counting, yielding multidecadal age uncertainty (median 2SD of ±70 years). New proxy data were compared to an existing late Holocene stalagmite record from the same cave system, allowing us to examine changes in hydrology over time and to paleoclimate records from the southern YP. The δ18O, δ13C, and Mg/Ca data consistently indicate higher mean precipitation and lower precipitation variability during the mid‐Holocene compared to the late Holocene. Despite this reduced variability, multidecadal precipitation variations were persistent in regional hydroclimate during the mid‐Holocene. We therefore conclude that higher summer insolation led to increased mean precipitation and decreased precipitation variability in the northern YP but that the region is susceptible to dry periods across climate mean states. Given projected decreases in wet season precipitation in the YP’s near future, we suggest that climate mitigation strategies emphasize drought preparation.

    more » « less
  5. Abstract

    Climate models predict Africa will warm by up to 5°C in the coming century, stressing African societies. To provide independent constraints on model predictions, this study compares two notable reconstructions of East African temperatures to those predicted by Paleoclimate Model Intercomparison Project (PMIP3) and transient TraCE (Transient Climate Evolution) simulations, focusing on the Mid‐Holocene (MH, 5–8 kyr B.P.). Reconstructions of tropical African temperature derived from lake sedimentary archives indicate 1–2.5°C of warming during the MH relative to the 20th century, but most climate models do not replicate the warming observed in these paleoclimate data. We investigate this discrepancy using a new lake proxy system model, with attention to the (potentially non‐stationary) relationship between lake temperature and air temperature. We find amplified lake surface temperature changes compared to air temperature during the MH due to heightened seasonality and precessional forcing. Lacustrine processes account for some of the warming, and highlight how the lake heat budget leads to a rectification of the seasonal cycle; however, the simulated lake heating bias is insufficient to reconcile the full discrepancy between the models and the proxy‐derived MH warming. We find further evidence of changes in mixing depth over time, potentially driven by changes in cloud cover and shortwave radiative fluxes penetrating the lake surface. This may confound interpretation for glycerol dialkyl glycerol tetraethers (GDGT) compounds which exist in the mixed layer, and suggests a need for independent constraints on mixed layer depth. This work provides a new interpretive framework for invaluable paleoclimate records of temperature changes over the African continent.

    more » « less