skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation
Abstract. Paleoclimatic records provide valuable information about Holocene climate, revealing aspects of climate variability for a multitude of sites around the world. However, such data also possess limitations. Proxy networks are spatially uneven, seasonally biased, uncertain in time, and present a variety of challenges when used in concert to illustrate the complex variations of past climate. Paleoclimatic data assimilation provides one approach to reconstructing past climate that can account for the diversenature of proxy records while maintaining the physics-based covariancestructures simulated by climate models. Here, we use paleoclimate dataassimilation to create a spatially complete reconstruction of temperatureover the past 12 000 years using proxy data from the Temperature 12k database and output from transient climate model simulations. Following the last glacial period, the reconstruction shows Holocene temperatures warming to a peak near 6400 years ago followed by a slow cooling toward the present day, supporting a mid-Holocene which is at least as warm as the preindustrial. Sensitivity tests show that if proxies have an overlooked summer bias, some apparent mid-Holocene warmth could actually represent summer trends rather than annual mean trends. Regardless, the potential effects of proxy seasonal biases are insufficient to align the reconstructed global mean temperature with the warming trends seen in transient model simulations.  more » « less
Award ID(s):
1903548 1903465
PAR ID:
10447684
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
18
Issue:
12
ISSN:
1814-9332
Page Range / eLocation ID:
2599 to 2629
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Holocene thermal maximum was characterized by strong summer solar heating that substantially increased the summertime temperature relative to preindustrial climate. However, the summer warming was compensated by weaker winter insolation, and the annual mean temperature of the Holocene thermal maximum remains ambiguous. Using multimodel mid-Holocene simulations, we show that the annual mean Northern Hemisphere temperature is strongly correlated with the degree of Arctic amplification and sea ice loss. Additional model experiments show that the summer Arctic sea ice loss persists into winter and increases the mid- and high-latitude temperatures. These results are evaluated against four proxy datasets to verify that the annual mean northern high-latitude temperature during the mid-Holocene was warmer than the preindustrial climate, because of the seasonally rectified temperature increase driven by the Arctic amplification. This study offers a resolution to the “Holocene temperature conundrum”, a well-known discrepancy between paleo-proxies and climate model simulations of Holocene thermal maximum. 
    more » « less
  2. Global hydroclimate significantly differed from modern climate during the mid-Holocene (6 ka) and Last Glacial Maximum (21 ka). Consequently, both periods have been described as either a partial or reverse analogue for current climate change. To reconstruct past hydroclimate, an offline paleoclimate data assimilation methodology is applied to a dataset of 216 lake status records which provide relative estimates of water level change. The proxy observations are integrated with the climate dynamics of two transient simulations (TraCE-21ka and HadCM3) using a multivariate proxy system model (PSM) which estimates relative lake status from available climate simulation variables. The resulting DAMP-21ka (Data Assimilation of Moisture Patterns 21 000–0 BP) reanalysis reconstructs annual lake status and precipitation values at 500-year resolution and represents the first application of the methodology to global hydroclimate on timescales spanning the Holocene and longer. Validation using Pearson's correlation coefficients indicates that the reconstruction (0.24) is more skillful, on average, than model simulations (0.09), particularly in portions of North America and east Africa, where data density is high and proxy–model disagreement is prominent during the Holocene. Results of the PSM and assimilation are used to evaluate climatic controls on lake status, spatiotemporal patterns of moisture variability, and proxy–model disagreement. During the mid-Holocene, wetter conditions are reconstructed for northern and eastern Africa, Asia, and southern Australia, but in contrast to the model prior, negative anomalies are observed in North America, resulting in drier-than-modern conditions throughout the Northern Hemisphere midlatitudes. Proxy–model disagreement in western North America may reflect a bias in model simulations to stronger sea level pressure gradients in the North Pacific during the mid-Holocene. The data assimilation framework is able to reconcile these differences by integrating the constraints of proxy observations with the dynamics of the model prior to produce a more robust estimation of hydroclimate variability during the past 21 000 years. 
    more » « less
  3. Abstract. Reconstructions of past temperature and precipitation are fundamental to modeling the Greenland Ice Sheet and assessing its sensitivity to climate. Paleoclimate information is sourced from proxy records and climate-model simulations; however, the former are spatially incomplete while the latter are sensitive to model dynamics and boundary conditions. Efforts to combine these sources of information to reconstruct spatial patterns of Greenland climate over glacial–interglacial cycles have been limited by assumptions of fixed spatial patterns and a restricted use of proxy data. We avoid these limitations by using paleoclimate data assimilation to create independent reconstructions of mean-annual temperature and precipitation for the last 20 000 years. Our method uses oxygen isotope ratios of ice and accumulation rates from long ice-core records and extends this information to all locations across Greenland using spatial relationships derived from a transient climate-model simulation. Standard evaluation metrics for this method show that our results capture climate at locations without ice-core records. Our results differ from previous work in the reconstructed spatial pattern of temperature change during abrupt climate transitions; this indicates a need for additional proxy data and additional transient climate-model simulations. We investigate the relationship between precipitation and temperature, finding that it is frequency dependent and spatially variable, suggesting that thermodynamic scaling methods commonly used in ice-sheet modeling are overly simplistic. Our results demonstrate that paleoclimate data assimilation is a useful tool for reconstructing the spatial and temporal patterns of past climate on timescales relevant to ice sheets. 
    more » « less
  4. In the future, monsoon rainfall over densely populated South Asia is expected to increase, even as monsoon circulation weakens1,2,3. By contrast, past warm intervals were marked by both increased rainfall and a strengthening of monsoon circulation4,5,6, posing a challenge to understanding the response of the South Asian summer monsoon to warming. Here we show consistent South Asian summer monsoon changes in the mid-Pliocene, Last Interglacial, mid-Holocene and future scenarios, characterized by an overall increase in monsoon rainfall, a weakening of the monsoon trough-like circulation over the Bay of Bengal and a strengthening of the monsoon circulation over the northern Arabian Sea, as revealed by a compilation of proxy records and climate simulations. Increased monsoon rainfall is thermodynamically dominated by atmospheric moisture following the rich-get-richer paradigm, and dynamically dominated by the monsoon circulation driven by the enhanced land warming in subtropical western Eurasia and northern Africa. The coherent response of monsoon dynamics across warm climates reconciles past strengthening with future weakening, reinforcing confidence in future projections. Further prediction of South Asian summer monsoon circulation and rainfall by physics-based regression models using past information agrees well with climate model projections, with spatial correlation coefficients of approximately 0.8 and 0.7 under the high-emissions scenario. These findings underscore the promising potential of past analogues, bolstered by palaeoclimate reconstruction, in improving future South Asian summer monsoon projections. 
    more » « less
  5. Abstract. The Oligocene (33.9–23.03 Ma) had warm climates with flattened meridional temperature gradients, while Antarctica retained a significant cryosphere. These may pose imperfect analogues to distant future climate states with unipolar icehouse conditions. Although local and regional climate and environmental reconstructions of Oligocene conditions are available, the community lacks synthesis of regional reconstructions. To provide a comprehensive overview of marine and terrestrial climate and environmental conditions in the Oligocene, and a reconstruction of trends through time, we review marine and terrestrial proxy records and compare these to numerical climate model simulations of the Oligocene. Results, based on the present relatively sparse data, suggest temperatures around the Equator that are similar to modern temperatures. Sea surface temperatures (SSTs) show patterns similar to land temperatures, with warm conditions at mid- and high latitudes (∼60–90°), especially in the Southern Hemisphere (SH). Vegetation-based precipitation reconstructions of the Oligocene suggest regionally drier conditions compared to modern times around the Equator. When compared to proxy data, climate model simulations overestimate Oligocene precipitation in most areas, particularly the tropics. Temperatures around the mid- to high latitudes are generally underestimated in models compared to proxy data and tend to overestimate the warming in the tropics. In line with previous proxy-to-model comparisons, we find that models underestimate polar amplification and overestimate the Equator-to-pole temperature gradient suggested from the available proxy data. This further stresses the urgency of solving this widely recorded problem for past warm climates, such as the Oligocene. 
    more » « less